Log in

Machine learning-based analyses for total ionizing dose effects in bipolar junction transistors

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Machine learning methods have proven to be powerful in various research fields. In this paper, we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach. The total ionizing dose (TID) effects usually cause gain degradation of bipolar junction transistors (BJTs), leading to functional failures of bipolar integrated circuits. Currently, many experiments of TID effects on BJTs have been conducted at different laboratories worldwide, producing a large amount of experimental data, which provides a wealth of information. However, it is difficult to utilize these data effectively. In this study, we proposed a new artificial neural network (ANN) approach to analyze the experimental data of TID effects on BJTs. An ANN model was built and trained using data collected from different experiments. The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data. The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current IB0. A possible cause for this finding was analyzed and confirmed through irradiation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Li, C. Wang, W. Chen et al., Synergistic effects of TID and ATREE in vertical NPN bipolar transistor. IEEE Trans. Nucl. Sci. 66, 1566–1573 (2019). https://doi.org/10.1109/TNS.2019.2909690

    Article  ADS  Google Scholar 

  2. X. Li, J. Yang, D.M. Fleetwood et al., Hydrogen soaking, displacement damage effects, and charge yield in gated lateral bipolar junction transistors. IEEE Trans. Nucl. Sci. 65, 1271–1276 (2018). https://doi.org/10.1109/TNS.2018.2837032

    Article  ADS  Google Scholar 

  3. R.L. Pease, R.D. Schrimpf, D.M. Fleetwood, ELDRS in bipolar linear circuits: a review. IEEE Trans. Nucl. Sci. 56, 1894–1908 (2009). https://doi.org/10.1109/TNS.2008.2011485

    Article  ADS  Google Scholar 

  4. D.M. Fleetwood, Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices. IEEE Trans. Nucl. Sci. 60, 1706–1730 (2013). https://doi.org/10.1109/TNS.2013.2259260

    Article  ADS  Google Scholar 

  5. G.I. Zebrev, A.S. Petrov, R.G. Useinov et al., Simulation of bipolar transistor degradation at various dose rates and electrical modes for high dose conditions. IEEE Trans. Nucl. Sci. 61, 1785–1790 (2014). https://doi.org/10.1109/TNS.2014.2315672

    Article  ADS  Google Scholar 

  6. L. Li, X. Chen, Y. Jian et al., Modeling the ionization damage on excess base current in pnp BJTs for circuit-level simulation. IEEE Trans. Nucl. Sci. 68, 2220–2231 (2021)

    Article  ADS  Google Scholar 

  7. S.Y. Chang, S.S. Yang, X. Wen et al., Experimental study on the total ionizing dose effects of nonvolatile RRAM. Nucl. Tech. 43(12), 120502 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.120502. (in Chinese)

    Article  Google Scholar 

  8. P. Wu, L. Wen, Z. Xu et al., Synergistic effects of total ionizing dose and radiated electromagnetic interference on analog-to-digital converter. Nucl. Sci. Tech. 33, 39 (2022). https://doi.org/10.1007/s41365-022-01017-x

    Article  Google Scholar 

  9. X.Y. Zhang, Q. Guo, Y.D. Li et al., Total ionizing dose and synergistic effects of magnetoresistive random access memory. Nucl. Sci. Tech. 29, 111 (2018). https://doi.org/10.1007/s41365-018-0451-8

    Article  ADS  Google Scholar 

  10. Y.N. Liu, Y.P. Yang, F.G. Chen et al., Radiation effect sensitive peripheral of 180 nm CMOS microprocessor and probabilistic model analysis of its damage dose. Nucl. Tech. 44(03), 030502 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.030502.(inChinese)

    Article  Google Scholar 

  11. G. Eraslan, Z. Avsec, J. Gagneur et al., Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet. 20, 389–403 (2019). https://doi.org/10.1038/s41576-019-0122-6

    Article  Google Scholar 

  12. Y. Li, Y. Xu, M. Jiang et al., Self-learning perfect optical chirality via a deep neural network. Phys. Rev. Lett. 123, 213902 (2019). https://doi.org/10.1103/PhysRevLett.123.213902

    Article  ADS  Google Scholar 

  13. J.M. Stokes, K. Yang, K. Swanson et al., A deep learning approach to antibiotic discovery. Cell 180, 688–702 (2020). https://doi.org/10.1016/j.cell.2020.01.021

    Article  Google Scholar 

  14. D. Visaria, A. Jain, Machine-learning-assisted space-transformation accelerates discovery of high thermal conductivity alloys. Appl. Phys. Lett. 117, 202107 (2020). https://doi.org/10.1063/5.0028241

    Article  ADS  Google Scholar 

  15. K.T. Butler, D.W. Davies, H. Cartwright et al., Machine learning for molecular and materials science. Nature 559, 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2

    Article  ADS  Google Scholar 

  16. J. Li, H. Zhang, J.Z.Y. Chen, Structural prediction and inverse design by a strongly correlated neural network. Phys. Rev. Lett. 123, 108002 (2019). https://doi.org/10.1103/PhysRevLett.123.108002

    Article  ADS  Google Scholar 

  17. O. Sharir, Y. Levine, N. Wies et al., Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Phys. Rev. Lett. 124, 020503 (2020). https://doi.org/10.1103/PhysRevLett.124.020503

    Article  ADS  Google Scholar 

  18. M.J. Hartmann, G. Carleo, Neural-network approach to dissipative quantum many-body dynamics. Phys. Rev. Lett. 122, 250502 (2019). https://doi.org/10.1103/PhysRevLett.122.250502

    Article  ADS  Google Scholar 

  19. A. Boehnlein, M. Diefenthaler, C. Fanelli et al., Machine learning in nuclear physics., ar**v preprint ar**v:2112.02309 (2021).

  20. S. Akkoyun, Estimation of fusion reaction cross-sections by artificial neural networks. Nucl. Instrum. Meth. B 462, 51–54 (2020). https://doi.org/10.1016/j.nimb.2019.11.014

    Article  ADS  Google Scholar 

  21. A.E. Lovell, A.T. Mohan, P. Talou, Quantifying uncertainties on fission fragment mass yields with mixture density networks. J. Phys. G Nucl. Particle Phys. 47, 114001 (2020). https://doi.org/10.1088/1361-6471/ab9f58

    Article  ADS  Google Scholar 

  22. Z. Gao, Y. Wang, H. Lü et al., Machine learning the nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). https://doi.org/10.1007/s41365-021-00956-1

    Article  Google Scholar 

  23. E. Doucet, T. Brown, P. Chowdhury et al., Machine learning n/γ discrimination in CLYC scintillators. Nucl. Instrum. Meth. A 954, 161201 (2020). https://doi.org/10.1016/j.nima.2018.09.036

    Article  Google Scholar 

  24. Z. Qian, V. Belavin, V. Bokov et al., Vertex and energy reconstruction in JUNO with machine learning methods. Nucl. Instrum. Meth. A 1010, 165527 (2021). https://doi.org/10.1016/j.nima.2021.165527

    Article  Google Scholar 

  25. Z.H. Wu, J.J. Bai, D.D. Zhang et al., Statistical analysis of helium bubbles in transmission electron microscopy images based on machine learning method. Nucl. Sci. Tech. 32, 54 (2021). https://doi.org/10.1007/s41365-021-00886-y

    Article  Google Scholar 

  26. Y. Zou, Q. **ng, B. Wang et al., Application of the asynchronous advantage actor–critic machine learning algorithm to real-time accelerator tuning. Nucl. Sci. Tech. 30, 158 (2019). https://doi.org/10.1007/s41365-019-0668-1

    Article  Google Scholar 

  27. Y. Yu, G. Liu, W. Xu et al., Research on tune feedback of the Hefei Light Source II based on machine learning. Nucl. Sci. Tech. 33, 28 (2022). https://doi.org/10.1007/s41365-022-01018-w

    Article  Google Scholar 

  28. C.E. Romano, L.A. Bernstein, T. Bailey et al., Proceedings of the Workshop for Applied Nuclear Data: WANDA2020. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States) (2020).

  29. D. Neudecker, O. Cabellos, A.R. Clark et al., Informing nuclear physics via machine learning methods with differential and integral experiments. Phys. Rev. C 104, 34611 (2021)

    Article  ADS  Google Scholar 

  30. S.C. Leemann, S. Liu, A. Hexemer et al., Demonstration of machine learning-based model-independent stabilization of source properties in synchrotron light sources. Phys. Rev. Lett. 123, 194801 (2019). https://doi.org/10.1103/PhysRevLett.123.194801

    Article  ADS  Google Scholar 

  31. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  ADS  Google Scholar 

  32. K.F. Galloway, R.L. Pease, R.D. Schrimpf et al., From displacement damage to ELDRS: fifty years of bipolar transistor radiation effects at the NSREC. IEEE Trans. Nucl. Sci. 60, 1731–1739 (2013). https://doi.org/10.1109/TNS.2013.2244615

    Article  ADS  Google Scholar 

  33. J. Boch, F. Saigne, A.D. Touboul et al., Dose rate effects in bipolar oxides: competition between trap filling and recombination. Appl. Phys. Lett. 88, 232113 (2006). https://doi.org/10.1063/1.2210293

    Article  ADS  Google Scholar 

  34. C. Wang, W. Chen, X. ** et al., Dependence on base width and do** concentration of current degradation in gate-controlled lateral PNP bipolar transistors exposed to reactor neutrons and gamma rays. Energy Procedia 127, 110–119 (2017). https://doi.org/10.1016/j.egypro.2017.08.119

    Article  Google Scholar 

  35. D.M. Schmidt, D.M. Fleetwood, R.D. Schrimpf et al., Comparison of ionizing-radiation-induced gain degradation in lateral, substrate, and vertical PNP BJTs. IEEE Trans. Nucl. Sci. 42, 1541–1549 (1995). https://doi.org/10.1109/23.488748

    Article  ADS  Google Scholar 

  36. J. Boch, F. Saigne, T. Maurel et al., Dose and dose rate effects on NPN bipolar junction transistors irradiated at high temperature. RADECS 2001, 357–362 (2001)

    Google Scholar 

  37. S.L. Kosier, R.D. Schrimpf, R.N. Nowlin et al., Charge separation for bipolar transistors. IEEE Trans. Nucl. Sci. 40, 1276–1285 (1993). https://doi.org/10.1109/23.273541

    Article  ADS  Google Scholar 

  38. S.R. Kulkarni, R. Damle, 60Co Gamma-ray induced gain degradation in bipolar junction transistors. Indian J. Phys. 85, 391–400 (2011)

    Article  ADS  Google Scholar 

  39. P. Zhang, X. Wu, Q. Yi et al., A comparison of the effects of cobalt-60 γ ray irradiation on DPSA bipolar transistors at high and low injection levels. Microelectron. Reliab. 71, 86–90 (2017). https://doi.org/10.1016/j.microrel.2017.02.015

    Article  Google Scholar 

  40. J.Y. Zhao, J.Q. Yang, L. Dong et al., Hydrogen soaking irradiation acceleration method: application to and damage mechanism analysis on 3DG111 transistors. Acta Phys. Sin. 68, 068501 (2019). https://doi.org/10.7498/aps.68.20181992(inChinese)

    Article  Google Scholar 

  41. O.M. Lawal, S. Liu, Z. Li et al., Experimental studies of collector-emitter voltage bias influence on the total ionization dose effects in NPN Si BJTs. Superlattices Microst. 122, 194–202 (2018). https://doi.org/10.1016/j.spmi.2018.08.008

    Article  ADS  Google Scholar 

  42. J.Q. Yang, L. Dong, C.M. Liu et al., Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors. Acta Phys. Sin. 67, 168501 (2018). https://doi.org/10.7498/aps.67.20172215. (in Chinese)

    Article  Google Scholar 

  43. X. Li, L. Dong, J. Yang et al., Impact of passivation layers on irradiation response of PNP transistors under different dose rates. IEEE Access 5, 22194–22198 (2017). https://doi.org/10.1109/ACCESS.2017.2756701

    Article  Google Scholar 

  44. Y. Pan, X. Nie, Z. Li et al., Data-driven vehicle modeling of longitudinal dynamics based on a multibody model and deep neural networks. Measurement 180, 109541 (2021). https://doi.org/10.1016/j.measurement.2021.109541

    Article  Google Scholar 

  45. J. Ma, S. Dong, G. Chen et al., A data-driven normal contact force model based on artificial neural network for complex contacting surfaces. Mech. Syst. Signal Pr. 156, 107612 (2021). https://doi.org/10.1016/j.ymssp.2021.107612

    Article  Google Scholar 

  46. Keras Documentation. https://keras.ioAccessed 22 September 2022.

  47. V. Nair, G. Hinton, Rectified linear units improve restricted boltzmann machines. In: 27th International Conference on Machine Learning (ICML-10) (2010).

  48. G.E. Hinton, N. Srivastava, A. Krizhevsky et al., Improving neural networks by preventing co-adaptation of feature detectors. ar**v:1207.0580 (2012) https://doi.org/10.48550/ar**v.1207.0580

  49. D. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations (ICLR 2015) (2015).

  50. D. Masters, C. Luschi, Revisiting small batch training for deep neural networks. ar**v:1804.07612 (2018).

  51. W.G. Jiang, G. Hagen, T. Papenbrock, Extrapolation of nuclear structure observables with artificial neural networks. Phys. Rev. C. 100, 54326 (2019). https://doi.org/10.1103/PhysRevC.100.054326

    Article  ADS  Google Scholar 

  52. R.S. Müller, T.I. Kamins, Device Electronics for Integrated Circuits (Wiley, New York, 2003), pp.281–286

    Google Scholar 

  53. B.S. Tolleson, P.C. Adell, B. Rax et al., Improved model for excess base current in irradiated lateral p-n-p bipolar junction transistors. IEEE Trans. Nucl. Sci. 65, 1488–1495 (2018). https://doi.org/10.1109/TNS.2018.2829110

    Article  ADS  Google Scholar 

  54. H.J. Barnaby, B. Vermeire, M.J. Campola, Improved model for increased surface recombination current in irradiated bipolar junction transistors. IEEE Trans. Nucl. Sci. 62, 1658–1664 (2015). https://doi.org/10.1109/TNS.2015.2452229

    Article  ADS  Google Scholar 

  55. H.J. Barnaby, S.K. Smith, R.D. Schrimpf et al., Analytical model for proton radiation effects in bipolar devices. IEEE Trans. Nucl. Sci. 49, 2643–2649 (2002). https://doi.org/10.1109/TNS.2002.805410

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Bai-Chuan Wang, Meng-Tong Qiu, and Chuan-**ang Tang. The first draft of the manuscript was written by Bai-Chuan Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chuan-**ang Tang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11690040 and 11690043).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BC., Qiu, MT., Chen, W. et al. Machine learning-based analyses for total ionizing dose effects in bipolar junction transistors. NUCL SCI TECH 33, 131 (2022). https://doi.org/10.1007/s41365-022-01107-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01107-w

Keywords

Navigation