Log in

Product yields for the photofission of 232Th, 234,238U, 237Np, and 239,240,242Pu actinides at various incident photon energies

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Photofission fragments mass yield for \(^{232}\hbox {Th}\), \(^{234,238}\hbox {U}\), \(^{237}\hbox {Np}\), and \(^{239,240,242}\hbox {Pu}\) isotopes are investigated. The calculations are done using a developed approach based on Gorodisskiy’s phenomenological formalism. The Gorodisskiy’s method is developed to be applied for the neutron-induced fission. Here we revised it for application to photofission. The effect of emitted neutron prior to fission on the fission fragment mass yields has also been studied. The peak-to-valley ratio is extracted for the \(^{240}\hbox {Pu}\) isotope as a function of energy. Obtained results of the present formalism are compared with the available experimental data. Satisfactory agreement is achieved between the results of present approach and the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Haxby, W. Shoupp, W. Stephens, Photo-fission of uranium and thorium. Phys. Rev. 59, 57 (1941). https://doi.org/10.1103/PhysRev.59.57

    Article  Google Scholar 

  2. C. Romano, Y. Danon, R. Block, J. Thompson, E. Blain, E. Bond, Fission fragment mass and energy distributions as a function of incident neutron energy measured in a lead slowing-down spectrometer. Phys. Rev. C 81, 014607 (2010). https://doi.org/10.1103/PhysRevC.81.014607

    Article  Google Scholar 

  3. D.M. Gorodisskiy, S.I. Mulgin, A.Y. Rusanov and S.V. Zhdanov, Isotopic invariance of fission fragment charge distributions for actinide nuclei at excitation energies above 10 MeV. Phys. At. Nucl. 66, 1190 (2003). https://doi.org/10.1134/1.1586436

    Article  Google Scholar 

  4. D.M. Gorodisskiy, S.I. Mulgin, V.N. Okolovich, A.Y. Rusanov, S.V. Zhdanov, Isotopic and isotonic effects in fission-fragment mass yields of actinide nuclei. Phys. Lett. B 548, 45 (2002). https://doi.org/10.1016/S0370-2693(02)02838-1

    Article  Google Scholar 

  5. W. Fu Cheng, H. Ji-Min, A study of the multimode fission model. J. Phys. G Nucl. Part. Phys. 15, 829 (1989). https://doi.org/10.1088/0954-3899/15/6/013

    Article  Google Scholar 

  6. P. Moller, J. Randrup, Calculated fission-fragment yield systematics in the region 74 \(\le\) Z \(\le\) 94 and 90 \(\le\) N \(\le\) 150. Phys. Rev. C 91, 044316 (2015). https://doi.org/10.1103/PhysRevC.91.044316

    Article  Google Scholar 

  7. M.R. Pahlavani, D. Naderi, Study of fusion cross-section in heavy-ion fusion-fission reactions at around fusion barrier energies using the Langevin dynamical approach. Eur. Phys. J. A 48, 129 (2012). https://doi.org/10.1140/epja/i2012-12129-y

    Article  Google Scholar 

  8. B.D. Wilkins, E.P. Steinberg, Semi-empirical interpretation of nuclear fission based on deformed-shell effects. Phys. Lett. B 42, 141 (1972). https://doi.org/10.1016/0370-2693(72)90046-9

    Article  Google Scholar 

  9. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Scission-point model of nuclear fission based on deformed-shell effects. Phys. Rev. C 14, 1832 (1976). https://doi.org/10.1103/PhysRevC.14.1832

    Article  Google Scholar 

  10. J. Moreau, K. Heyde, M. Waroquier, Nuclear temperature effects in the scission-point model of nuclear fission. Phys. Rev. C 28, 1640 (1983). https://doi.org/10.1103/PhysRevC.28.1640

    Article  Google Scholar 

  11. A.R. DeL Musgrove, J.L. Cook, G.D. Trimble, in Proceedings Fifteenth Annual ACM, Bologna, V. II in IAEA-169, vol 163 (1974)

  12. A.C. Wahl, Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of \(^{235}\)U, \(^{233}\)U, and \(^{239}\)Pu and for spontaneous fission of \(^{252}\)Cf. At. Data Nucl. Data Tables 39, 1 (1988). https://doi.org/10.1016/0092-640X(88)90016-2

    Article  Google Scholar 

  13. J. Katakura, in Report JAERI-Research (2003–2004)

  14. R.W. Mills, Fission Product Yield Evaluation, Ph.D thesis (School of Physics and Space Research, University of Birmingham, 1995)

  15. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, General description of fission observables: GEF model code. Nucl. Data Sheets 131, 107 (2016). https://doi.org/10.1016/j.nds.2015.12.009

    Article  Google Scholar 

  16. M.R. Pahlavani, S.M. Mirfathi, Neutron-induced fission of even- and odd-mass plutonium isotopes within a four-dimensional Langevin framework. Phys. Rev. C 96, 014606 (2017). https://doi.org/10.1103/PhysRevC.96.014606

    Article  Google Scholar 

  17. M.R. Pahlavani, S.M. Mirfathi, Dynamical simulation of neutron-induced fission of uranium isotopes using four-dimensional Langevin equations. Phys. Rev. C 93, 044617 (2016). https://doi.org/10.1103/PhysRevC.93.044617

    Article  Google Scholar 

  18. M.R. Pahlavani, S.M. Mirfathi, Dynamics of neutron-induced fission of \(^{235}\)U using four-dimensional Langevin equations. Phys. Rev. C 92, 024622 (2015). https://doi.org/10.1103/PhysRevC.92.024622

    Article  Google Scholar 

  19. M.R. Pahlavani, S.M. Mirfathi, Dynamical simulation of neutron-induced fission of uranium isotopes using four-dimensional Langevin equations. Eur. Phys. J. A 52, 95 (2016). https://doi.org/10.1103/PhysRevC.93.044617

    Article  Google Scholar 

  20. J. Randrup, P. Moller, Brownian shape motion on five-dimensional potential-energy surfaces: nuclear fission-fragment mass distributions. Phys. Rev. Lett. 106, 132503 (2011). https://doi.org/10.1103/PhysRevLett.106.132503

    Article  Google Scholar 

  21. J. Randrup, P. Moller, A.J. Sierk, Calculated fission yields of neutron-deficient mercury isotopes. Phys. Rev. C 85, 024306 (2012). https://doi.org/10.1103/PhysRevC.85.024306

    Article  Google Scholar 

  22. D.M. Gorodisskiy, K.V. Kovalchuk, S.I. Mulgin, Systematics of fragment mass yields from fission of actinide nuclei induced by the \(5\)\(200\) MeV protons and neutrons. Ann. Nucl. Energy 35, 238 (2008). https://doi.org/10.1016/j.anucene.2007.06.002

    Article  Google Scholar 

  23. U. Brosa, S. Grossmann, A. Mller, Nuclear scission. Phys. Rep. 197, 167 (1990). https://doi.org/10.1016/0370-1573(90)90114-H

    Article  Google Scholar 

  24. D.M. Gorodisskiy, S.I. Mulgin, A.Y. Rusanov et al., The new-revealed regularities of fragments mass yield from the proton induced fission of actinide nuclei, in Proceedings of the 5th International Conference on Dynamical Aspects of Nuclear Fission pp. 287. https://doi.org/10.1142/9789812776723-0023 (2002)

  25. S.I. Mulgin, V.N. Okolovich, S.V. Zhdanov, Observation of new channel in the proton-induced low-energy fission of nuclei from \(^{233}\text{Pa}\) to \(^{245}\text{Bk}\). Phys. Lett. B 462, 29 (1999). https://doi.org/10.1016/S0370-2693(99)00859-X

    Article  Google Scholar 

  26. I.V. Pokrovsky, M.G. Itkis, J.M. Itkis, Fission modes in the reaction \(^{208}\text{Pb}\)(\(^{18}\text{O}\), f). Phys. Rev. C 62, 014615 (2000). https://doi.org/10.1103/PhysRevC.62.014615

    Article  Google Scholar 

  27. H. Thierens, A. De, E.J. Clercq, Kinetic energy and fragment mass distributions for \(^{240}\text{Pu}\)(s.f.), \(^{239}\text{Pu}\)(\(n_{\text{th}}\), f), and \(^{240}\text{Pu}\)(\(\gamma\), f). Phys. Rev. C 23, 2104 (1981). https://doi.org/10.1103/PhysRevC.23.2104

    Article  Google Scholar 

  28. H. Naik, G.N. Kim, R. Schwengner, Fission product yield distribution in the 12, 14, and 16 MeV bremsstrahlung-induced fission of \(^{232}\text{Th}\). Eur. Phys. J. A 51, 150 (2015). https://doi.org/10.1140/epja/i2015-15150-8

    Article  Google Scholar 

  29. B. Schroder, G. Nydahl, B. Forkman, High-energy photofission in \(^{238}\text{U}\), \(^{232}\text{Th}\) and \(^{209}\text{Bi}\). Nucl. Phys. A 143, 449 (1970). https://doi.org/10.1016/0375-9474(70)90541-5

    Article  Google Scholar 

  30. H. Naik, V.T. Nimje, D. Raj, Mass distribution in the bremsstrahlung-induced fission of \(^{232}\text{Th}\), \(^{238}\text{U}\) and \(^{240}\text{Pu}\). Nucl. Phys. A 853, 1 (2011). https://doi.org/10.1016/j.nuclphysa.2011.01.009

    Article  Google Scholar 

  31. H. Naik, F. Carrel, G.N. Kim et al., Mass yield distributions of fission products from photo-fission of \(^{238}\text{U}\) induced by 11.5 \(\rightarrow\) 17.3 MeV bremsstrahlung. Eur. Phys. J. A Hadrons Nucl. 49, 94 (2013). https://doi.org/10.1140/epja/i2013-13094-7

    Article  Google Scholar 

  32. S.S. Belyshev, B.S. Ishkhanov, A.A. Kuznetsov et al., Mass yield distributions and fission modes in photofission of \(^{238}\text{U}\) below 20 MeV. Phys. Rev. C 91, 034603 (2015). https://doi.org/10.1103/PhysRevC.91.034603

    Article  Google Scholar 

  33. E. Jacobs, H. Thierens, D. De Frenne et al., Product yields for the photofission of \(^{238}\text{U}\) with 12, 15, 20, 30, and 70 MeV bremsstrahlung. Phys. Rev. C 19, 422 (1979). https://doi.org/10.1103/PhysRevC.19.422

    Article  Google Scholar 

  34. M.Y. Kondrat’ko, V.N. Korinets, K.A. Petrzhak, The fragment yields in Np-237 photofission. Sov. At. Energy 35, 862 (1973). https://doi.org/10.1007/BF01164117

    Article  Google Scholar 

  35. H. Thierens, E. Jacobs, P. D’hondt et al., Fragment mass and kinetic energy distributions for \(^{242}\text{Pu}\)(sf), \(^{241}\text{Pu}\)(\(n_{\text{th}}\), f), and \(^{242}\text{Pu}\)(\(\gamma\), f). Phys. Rev. C 29, 498 (1984). https://doi.org/10.1103/PhysRevC.29.498

    Article  Google Scholar 

  36. M.Y. Kondratko, A.V. Mosesov, K.A. Petrzhak, Product yields of photofission of Pu-239. Sov. At. Energy 50, 41 (1981). https://doi.org/10.1007/BF01141251

    Article  Google Scholar 

  37. P. David, J. Debrus, U. Kim, High-energy photofission of gold and uranium. Nucl. Phys. A 197, 163 (1972). https://doi.org/10.1016/0375-9474(72)90753-1

    Article  Google Scholar 

  38. V.D. Bang, Y.S. Zamyatnin, C.D. Tkhien, Yield of Pu-242 photofission fragments. Sov. At. Energy 58, 320 (1985). https://doi.org/10.1007/BF01207227

    Article  Google Scholar 

  39. A. Gk, M. Chernykh, C. Eckardt, Fragment characteristics from fission of \(^{238}\text{U}\) and \(^{234}\text{U}\) induced by 6.5 to 9.0 MeV bremsstrahlung. Nucl. Phys. A 851, 1 (2011). https://doi.org/10.1016/j.nuclphysa.2010.12.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Pahlavani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahlavani, M.R., Mehdipour, P. Product yields for the photofission of 232Th, 234,238U, 237Np, and 239,240,242Pu actinides at various incident photon energies. NUCL SCI TECH 29, 146 (2018). https://doi.org/10.1007/s41365-018-0482-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0482-1

Keywords

Navigation