Log in

Recent Advancement in Nanotechnology for the Treatment of Pharmaceutical Wastewater: Sources, Toxicity, and Remediation Technology

  • WATER AND SEDIMENT POLLUTION (G TOOR, L NGHIEM AND W ZHANG, SECTION EDITORS)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

The textile, paper and pulp, distillery, and pharmaceutical industries are only a few of the many sectors that contribute significantly to the contamination of water bodies and their unsuitability for human use. Pharmaceuticals, which are credited with saving millions of lives in recent decades, have emerged as a new category of environmental hazard. Their prolonged presence in the environment has a number of negative effects, including gene toxicity, hormone interference, antibiotic resistance, the imposition of sex organs, and many others. To ensure that everyone in the world can access to uncontaminated and safe drinking water, it is important to treat pharmaceutical laden wastewater before discharge in fresh water body. Nanotechnology is getting significant attention due to enormous properties such as the high surface area to volume ratio, new optical properties, and desired shape. Nanomaterials might be a strong option for purifying water of a variety of environmental pollutants. This review also touches on several environmental aspects of pharmaceuticals, including (i) the current status of pharmaceuticals production and their use pattern, (ii) sources, occurrence, and transport behaviour of pharmaceuticals, (iii) analysis techniques and potential toxicity of pharmaceuticals and (iv) various conventional and advanced nanotechnology for water remediation. The present review is predominately designed to highlight the progress and major update in advantaged nanotechnology for remediation of pharmaceutical contaminated wastewater. The literature study (2015–2022) critically illustrated the recent pharmaceutical contaminations concerns and remediation efforts emphasizing nanotechnology like nanoadsorption, AOPs, nano-catalyst, electrochemical degradation and nanomembrane/nanofiltration technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kasonga TK, Coetzee MAA, Kamika I, Ngole-Jeme VM, Benteke Momba MN. Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. J Environ Manage. 2021;277:111485. https://doi.org/10.1016/j.jenvman.2020.111485.

  2. Rout PR, Zhang TC, Bhunia P, Surampalli RY. Treatment technologies for emerging contaminants in wastewater treatment plants: a review. Sci Total Environ. 2021;753:141990. https://doi.org/10.1016/j.scitotenv.2020.141990.

  3. Massima Mouele ES, Tijani JO, Badmus KO, Pereao O, Babajide O, Zhang C, et al. Removal of pharmaceutical residues from water and wastewater using dielectric barrier discharge methods—a review. Int J Environ Res Public Health. 2021;18https://doi.org/10.3390/ijerph18041683.

  4. Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. Water Res. 2021;188:116446. https://doi.org/10.1016/j.watres.2020.116446.

  5. Kataria N, Bhushan D, Gupta R, Rajendran S, Teo MYM, Khoo KS. Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: occurrence, toxicity and remediation mechanisms. Environ Pollut. 2022;120319. https://doi.org/10.1016/j.envpol.2022.120319.

  6. Botero-Coy AM, Martínez-Pachón D, Boix C, Rincón RJ, Castillo N, Arias-Marín LP, et al. An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci Total Environ. 2018;2018(642):842–53. https://doi.org/10.1016/j.scitotenv.2018.06.088.

    Article  CAS  Google Scholar 

  7. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev. 2019;119(6):3510–673. https://doi.org/10.1021/acs.chemrev.8b00299.

    Article  CAS  Google Scholar 

  8. Akhtar J, Amin NAS, Shahzad K. A review on removal of pharmaceuticals from water by adsorption. Desalination Water Treat. 2016;57(27):12842–60. https://doi.org/10.1080/19443994.2015.1051121.

    Article  CAS  Google Scholar 

  9. Huang Y, Xu W, Hu L, Zeng J, He C, Tan X, et al. Combined adsorption and catalytic ozonation for removal of endocrine disrupting compounds over MWCNTs/Fe3O4 composites. Catal Today. 2017;297:143–50. https://doi.org/10.1016/j.cattod.2017.05.097.

    Article  CAS  Google Scholar 

  10. Daughton CG. Non-regulated water contaminants: emerging research. Environ Impact Assess Rev. 2004;24(7–8):711–32. https://doi.org/10.1016/j.eiar.2004.06.003.

    Article  Google Scholar 

  11. Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ. 2004;329(1–3):99–113. https://doi.org/10.1016/j.scitotenv.2004.03.015.

    Article  CAS  Google Scholar 

  12. Biel-Maeso M, Corada-Fernández C, Lara-Martín PA. Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environ Pollut. 2018;235:312–21. https://doi.org/10.1016/j.envpol.2017.12.085.

    Article  CAS  Google Scholar 

  13. Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Plan Manag. 2018;219:189–207. https://doi.org/10.1016/j.jenvman.2018.04.103.

    Article  CAS  Google Scholar 

  14. Sammut Bartolo N, Azzopardi LM, Serracino-Inglott A. Pharmaceuticals and the environment. Early Human Dev. 2021;155:105218. https://doi.org/10.1016/j.earlhumdev.2020.105218.

  15. Renita AA, Kumar PS, Srinivas S, Priyadharshini S, Karthika M. A review on analytical methods and treatment techniques of pharmaceutical wastewater. Desalination Water Treat. 2017;87:160–78.

    Article  CAS  Google Scholar 

  16. Madhura L, Singh S, Kanchi S, Sabela M, Bisetty K. Nanotechnology-based water quality management for wastewater treatment. Environ Chem Lett. 2019;17(1):65–121. https://doi.org/10.1007/s10311-018-0778-8.

    Article  CAS  Google Scholar 

  17. Styszko K, Proctor K, Castrignanò E, Kasprzyk-Hordern B. Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland. Sci Total Environ. 2021;768:144360. https://doi.org/10.1016/j.scitotenv.2020.144360.

  18. Kanama KM, Daso AP, Mpenyana-Monyatsi L, Coetzee MA. Assessment of pharmaceuticals, personal care products, and hormones in wastewater treatment plants receiving inflows from health facilities in North West Province. South Africa Int J Toxicol. 2018. https://doi.org/10.1155/2018/3751930.

    Article  Google Scholar 

  19. Anjanapriya S, SulaimanMumtaz M, Abdul MH, Mohideen K, Radha A, Sasirekha N, et al. Pharmaceutical pollution crisis in the world: a menace to ecosystem. 2021;8(1):77–79. https://doi.org/10.51847/iUGgphofKK.

  20. Yao B, Yan S, Lian L, Yang X, Wan C, Dong H. Occurrence and indicators of pharmaceuticals in Chinese streams: a nationwide study. Environ Pollut. 2018;236:889–98. https://doi.org/10.1016/j.envpol.2017.10.032.

    Article  CAS  Google Scholar 

  21. Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manage. 2016;182:620–40. https://doi.org/10.1016/j.jenvman.2016.07.049.

    Article  CAS  Google Scholar 

  22. Zhou T, Zhang Z, Liu H, Dong S, Nghiem L, Gao L, et al. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: occurrence, fate, and removal mechanism. J Hazard Mater. 2022;130213. https://doi.org/10.1016/j.jhazmat.2022.130213.

  23. Ågerstrand M, Berg C, Björlenius B, Breitholtz M, Brunström B, Fick J, et al. Improving environmental risk assessment of human pharmaceuticals. Environ Sci Technol. 2015;49(9):5336–45. https://doi.org/10.1021/acs.est.5b00302.

    Article  CAS  Google Scholar 

  24. Ramy A, Af Ragab M, Arisha A. Knowledge management in the pharmaceutical industry between academic research and industry regulations. Knowl Manag Res Pract. 2022;20:202–18. https://doi.org/10.1080/14778238.2020.1767517.

    Article  Google Scholar 

  25. Malerba F, Orsenigo L. The evolution of the pharmaceutical industry. Bus Hist. 2015;57:664–87. https://doi.org/10.1080/00076791.2014.975119.

    Article  Google Scholar 

  26. Efpia. The Pharmaceutical Industry in Figures. Available online: https://www.efpia.eu/media/554521/efpia_pharmafigures_2020_web.pdf. (Accessed on 12 March 2022).

  27. Dehghani MH, Karri RR, Alimohammadi M, Nazmara S, Zarei A, Saeedi Z. Insights into endocrine-disrupting Bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zero-valent iron nanoparticles. J Mol Liq. 2020;311. https://doi.org/10.1016/j.molliq.2020.113317.

  28. Mikulic. Pharmaceutical market: worldwide revenue 2001–2021. 2022. Available online: https://www.statista.com/aboutus/our-research-commitment/285/matej-mikulic. (Accessed on 12 Jan 2023).

  29. Mikulic. Total global pharmaceutical R&D spending 2014–2028. 2022. Available online: https://www.statista.com/aboutus/our-research-commitment/285/matej-mikulic. (Accessed on 12 Jan 2023).

  30. Maliszewska M, Mattoo A, Van Der Mensbrugghe D. The potential impact of COVID-19 on GDP and trade: a preliminary assessment. World Bank policy research working paper 2020. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3573211.

  31. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev. 2019;119:3510–673. https://doi.org/10.1021/acs.chemrev.8b00299.

    Article  CAS  Google Scholar 

  32. Prescription Drug Statistics & Trends. 2022. Available online: https://www.drugmart.com/articles/2022-prescription-drug-statistics-trends. (Accessed on 12 Jan 2023).

  33. IMS. Global Medicines Use in 2020. Available online: https://www.scribd.com/document/489227019/global-medicines-use-in-2020#. (Accessed on 12 Jan 2023).

  34. Klein Goldewijk K, Beusen A, Janssen P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene. 2010;20:565–573. https://doi.org/10.1177/0959683609356587.

  35. Snyder SA, Keith TL, Verbrugge DA, Snyder EM, Gross TS, Kannan K. Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environ Sci Technol. 1999;33:2814–20. https://doi.org/10.1021/es981294f.

    Article  CAS  Google Scholar 

  36. Chander V, Sharma B, Negi V, Aswal RS, Singh P, Singh R. Pharmaceutical compounds in drinking water. J Xenobiot. 2016;6:5774. https://doi.org/10.4081/xeno.2016.5774.

    Article  CAS  Google Scholar 

  37. Patneedi CB, Prasadu KD. Impact of pharmaceutical wastes on human life and environment. Rasayan J Chem. 2015;8:67–70.

    CAS  Google Scholar 

  38. Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut. 2014;187:193–201. https://doi.org/10.1016/j.envpol.2014.01.015.

    Article  CAS  Google Scholar 

  39. Kibuye FA, Gall HE, Elkin KR, Ayers B, Veith TL, Miller M, et al. Fate of pharmaceuticals in a spray-irrigation system: from wastewater to groundwater. Sci Total Environ. 2019;654:197–208. https://doi.org/10.1016/j.scitotenv.2018.10.442.

    Article  CAS  Google Scholar 

  40. Dao KC, Yang C-C, Chen K-F, Tsai Y-P. Recent trends in removal pharmaceuticals and personal care products by electrochemical oxidation and combined systems. Water. 2020;12:1043. https://doi.org/10.3390/w12041043.

    Article  CAS  Google Scholar 

  41. Wilkinson JL, Boxall AB, Kolpin, DW, Leung KM, Lai RW, Galbán-Malagón C, et al. Pharmaceutical pollution of the world’s rivers. Proc Natl Acad Sci. 2022;119(8):e2113947119. https://doi.org/10.1073/pnas.2113947119.

  42. Ebele AJ, Oluseyi T, Drage DS, Harrad S, Abou-Elwafa Abdallah M. Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State. Nigeria Emerg Contam. 2020;6:124–32. https://doi.org/10.1016/j.emcon.2020.02.004.

    Article  Google Scholar 

  43. Kondor AC, Jakab G, Vancsik A, Filep T, Szeberényi J, Szabó L, et al. Occurrence of pharmaceuticals in the Danube and drinking water wells: efficiency of riverbank filtration. Environ Pollut. 2020;265:114893. https://doi.org/10.1016/j.envpol.2020.114893.

  44. Bexfield LM, Toccalino PL, Belitz K, Foreman WT, Furlong ET. Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environ Sci Technol. 2019;53:2950–60. https://doi.org/10.1021/acs.est.8b05592.

    Article  CAS  Google Scholar 

  45. Kibuye FA, Gall HE, Elkin KR, Swistock B, Veith TL, Watson JE, et al. Occurrence, concentrations, and risks of pharmaceutical compounds in private wells in Central Pennsylvania. J Environ Qual. 2019;48:1057–66. https://doi.org/10.2134/jeq2018.08.0301.

    Article  CAS  Google Scholar 

  46. Sharma BM, Bečanová J, Scheringer M, Sharma A, Bharat GK, Whitehead PG, et al. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin. India Sci Total Environ. 2019;646:1459–67. https://doi.org/10.1016/j.scitotenv.2018.07.235.

    Article  CAS  Google Scholar 

  47. Praveena SM, Mohd Rashid MZ, Mohd Nasir FA, Sze Yee W, Aris AZ. Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicol Environ Saf. 2019;180:549–56. https://doi.org/10.1016/j.ecoenv.2019.05.051.

    Article  CAS  Google Scholar 

  48. Schulze S, Zahn D, Montes R, Rodil R, Quintana JB, Knepper TP, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res. 2019;153:80–90. https://doi.org/10.1016/j.watres.2019.01.008.

    Article  CAS  Google Scholar 

  49. Sousa JCG, Ribeiro AR, Barbosa MO, Ribeiro C, Tiritan ME, Pereira MFR, et al. Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers. Sci Total Environ. 2019;649:1083–95. https://doi.org/10.1016/j.scitotenv.2018.08.309.

    Article  CAS  Google Scholar 

  50. Afonso-Olivares C, Sosa-Ferrera Z, Santana-Rodríguez JJ. Occurrence and environmental impact of pharmaceutical residues from conventional and natural wastewater treatment plants in Gran Canaria (Spain). Sci Total Environ. 2017;599–600:934–43. https://doi.org/10.1016/j.scitotenv.2017.05.058.

    Article  CAS  Google Scholar 

  51. Veiga-Gómez M, Nebot C, Franco CM, Miranda JM, Vázquez B, Cepeda A. Identification and quantification of 12 pharmaceuticals in water collected from milking parlors: Food safety implications. J Dairy Sci. 2017;100:3373–83. https://doi.org/10.3168/jds.2016-12227.

    Article  CAS  Google Scholar 

  52. K’Oreje KO, Vergeynst L, Ombaka D, De Wispelaere P, Okoth M, Van Langenhove H, et al. Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city. Kenya Chemosphere. 2016;149:238–44. https://doi.org/10.1016/j.chemosphere.2016.01.095.

    Article  CAS  Google Scholar 

  53. Li N, Zhang T, Chen G, Xu J, Ouyang G, Zhu F. Recent advances in sample preparation techniques for quantitative detection of pharmaceuticals in biological samples. TrAC Trends Analyt Chem. 2021;142:116318. https://doi.org/10.1016/j.trac.2021.116318.

  54. Soares KL, Sunyer-Caldú A, Barbosa SC, Primel EG, Fillmann G, Cruz MSD. Rapid and cost-effective multiresidue analysis of pharmaceuticals, personal care products, and antifouling booster biocides in marine sediments using matrix solid phase dispersion. Chemosphere. 2021;267:129085. https://doi.org/10.1016/j.chemosphere.2020.129085.

  55. Abu Al-Rub FA, Fares MM, Mohammad AR. Use of nanohybrid nanomaterials in water treatment: highly efficient removal of ranitidine. RSC Adv. 2020;10:37050–63. https://doi.org/10.1039/D0RA05530A.

    Article  CAS  Google Scholar 

  56. Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, et al. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq. 2020;298:112040. https://doi.org/10.1016/j.molliq.2019.112040.

  57. Deng F, Zhao L, Luo X, Luo S, Dionysiou DD. Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater. Chem Eng J. 2018;333:423–33. https://doi.org/10.1016/j.cej.2017.09.022.

    Article  CAS  Google Scholar 

  58. Wang J, Zhang Q, Deng F, Luo X, Dionysiou DD. Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions. Chem Eng J. 2020;379:122264. https://doi.org/10.1016/j.cej.2019.122264.

  59. Ghenaatgar A, Tehrani RM, Khadir A. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: optimization of operational parameters and kinetic studies. J Water Process Eng. 2019;32:100969. https://doi.org/10.1016/j.jwpe.2019.100969.

  60. Husein DZ, Hassanien R, Al-Hakkani MF. Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon. 2019;5:e02339. https://doi.org/10.1016/j.heliyon.2019.e02339.

  61. Zhu H, Ma W, Han H, Han Y, Ma W. Catalytic ozonation of quinoline using nano-MgO: efficacy, pathways, mechanisms and its application to real biologically pretreated coal gasification wastewater. Chem Eng J. 2017;327:91–9. https://doi.org/10.1016/j.cej.2017.06.025.

    Article  CAS  Google Scholar 

  62. Malakootian M, Olama N, Malakootian M, Nasiri A. Photocatalytic degradation of metronidazole from aquatic solution by TiO2-doped Fe3+ nano-photocatalyst. Int J Environ Sci Technol. 2019;16:4275–84. https://doi.org/10.1007/s13762-018-1836-2.

    Article  CAS  Google Scholar 

  63. Godoy AA, Kummrow F, Pamplin PAZ. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment-a review. Chemosphere. 2015;138:281–91. https://doi.org/10.1016/j.chemosphere.2015.06.024.

    Article  CAS  Google Scholar 

  64. Houtman CJ, Kroesbergen J, Lekkerkerker-Teunissen K, Van der Hoek JP. Human health risk assessment of the mixture of pharmaceuticals in Dutch drinking water and its sources based on frequent monitoring data. Sci Total Environ. 2014;496:54–62. https://doi.org/10.1016/j.scitotenv.2014.07.022.

    Article  CAS  Google Scholar 

  65. Khan AH, Aziz HA, Khan NA, Hasan MA, Ahmed S, Farooqi IH, et al. Impact, disease outbreak and the eco-hazards associated with pharmaceutical residues: a critical review. Int J Environ Sci Technol. 2022;19(1):677–88. https://doi.org/10.1007/s13762-021-03158-9.

    Article  CAS  Google Scholar 

  66. Ashfaq M, Nawaz Khan K, Saif Ur Rehman M, Mustafa G, Faizan Nazar M, Sun Q, et al. Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol Environ Saf. 2017;136:31–39. https://doi.org/10.1016/j.ecoenv.2016.10.029.

  67. Bielen A, Šimatović A, Kosić-Vukšić J, Senta I, Ahel M, Babić S, et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 2017;126:79–87. https://doi.org/10.1016/j.watres.2017.09.019.

    Article  CAS  Google Scholar 

  68. Green RE, Taggart MA, Das D, Pain DJ, Sashi Kumar C, Cunningham AA, et al. Collapse of Asian vulture populations: risk of mortality from residues of the veterinary drug diclofenac in carcasses of treated cattle. J Appl Ecol. 2006;43(5):949–56. https://doi.org/10.1111/j.1365-2664.2006.01225.x.

    Article  CAS  Google Scholar 

  69. Taggart MA, Cuthbert R, Das D, Sashikumar C, Pain DJ, Green RE, et al. Diclofenac disposition in Indian cow and goat with reference to Gyps vulture population declines. Environ Pollut. 2007;147(1):60–5. https://doi.org/10.1016/j.envpol.2006.08.017.

    Article  CAS  Google Scholar 

  70. Kalyva M. Fate of pharmaceuticals in the environment-A review. 2017.

  71. Udebuani A, Ofoma A, Otitoju O, Abara P, Ezejiofor T, Chukwuma M. Cytotoxic and genotoxic impacts of pharmaceutical effluent from KP Pharmaceutical Industry. Nigeria Am Chem Sci J. 2016;16:1–10. https://doi.org/10.9734/ACSJ/2016/27604.

    Article  CAS  Google Scholar 

  72. Ngqwala NP, Muchesa P. Occurrence of pharmaceuticals in aquatic environments: a review and potential impacts in South Africa S. Afr J Sci. 2020;116(7–8):1–7. https://doi.org/10.17159/sajs.2020/5730.

  73. Simazaki D, Kubota R, Suzuki T, Akiba M, Nishimura T, Kunikane S. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Res. 2015;76:187–200. https://doi.org/10.1016/j.watres.2015.02.059.

    Article  CAS  Google Scholar 

  74. Sun J, Luo Q, Wang D, Wang Z. Occurrences of pharmaceuticals in drinking water sources of major river watersheds. China Ecotoxicol Environ Saf. 2015;117:132–40. https://doi.org/10.1016/j.ecoenv.2015.03.032.

    Article  CAS  Google Scholar 

  75. Ellepola N, Ogas T, Turner DN, Gurung R, Maldonado-Torres S, Tello-Aburto R, et al. A toxicological study on photo-degradation products of environmental ibuprofen: ecological and human health implications. Ecotoxicol Environ Saf. 2020;188:109892. https://doi.org/10.1016/j.ecoenv.2019.109892.

  76. Piña B, Bayona JM, Christou A, Fatta-Kassinos D, Guillon E, Lambropoulou D, et al. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes–NEREUS COST Action ES1403 position paper. J Environ Chem Eng. 2020;8(1):102131. https://doi.org/10.1016/j.jece.2018.01.011.

  77. Kamba PF, Kaggwa B, Munanura EI, Okurut T, Kitutu FE. Why regulatory indifference towards pharmaceutical pollution of the environment could be a missed opportunity in public health protection. a holistic view. Pan Afr Med J. 2017;27(1). https://doi.org/10.11604/pamj.2017.27.77.10973.

  78. Buesing MA, McSweegan E. Submitting biologics applications to the Center for Biologics Evaluation and Research Electronically. Drug Inf J: DIJ/Drug Inf Assoc. 1999;33:1–15. https://doi.org/10.1177/009286159903300101.

    Article  Google Scholar 

  79. Nyaga MN, Nyagah DM, Njagi A. Pharmaceutical waste: overview, management, and impact of improper disposal. Preprints. 2020;2020100245.

  80. Elbakidze L, Beeson Q. State regulatory heterogeneity and compliance with the clean water and safe drinking water acts. Water Resour Res. 2021;57:e2020WR028952.

  81. Wieczorkiewicz SM, Kassamali Z, Danziger LH. Behind closed doors: medication storage and disposal in the home. Ann Pharmacother. 2013;47:482–9. https://doi.org/10.1345/aph.1R706.

    Article  Google Scholar 

  82. Bagheri H, Afkhami A, Noroozi A. Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: a review. Anal Bioanal Chem Res. 2016;3:1–18.

    CAS  Google Scholar 

  83. Gadipelly C, Pérez-González A, Yadav GD, Ortiz I, Ibáñez R, Rathod VK, et al. Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind Eng Chem Res. 2014;53:11571–92. https://doi.org/10.1021/ie501210j.

    Article  CAS  Google Scholar 

  84. Boshir M, Zhou JL, Ngo HH, Guo W, Chen M. Bioresource technology progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol. 2016;214:836–51. https://doi.org/10.1016/j.biortech.2016.05.057.

    Article  CAS  Google Scholar 

  85. De Andrade JR, Oliveira MF, Da Silva MG, Vieira MG. Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res. 2018;57:3103–27. https://doi.org/10.1021/acs.iecr.7b05137.

    Article  CAS  Google Scholar 

  86. Shi X, Leong KY, Ng HY. Anaerobic treatment of pharmaceutical wastewater: a critical review. Bioresour Technol. 2017;245:1238–44. https://doi.org/10.1016/j.biortech.2017.08.150.

    Article  CAS  Google Scholar 

  87. Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour Technol. 2017;224:1–12. https://doi.org/10.1016/j.biortech.2016.11.042.

    Article  CAS  Google Scholar 

  88. Zaied B, Rashid M, Nasrullah M, Zularisam A, Pant D, Singh L. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Sci Total Environ. 2020;726:138095. https://doi.org/10.1016/j.scitotenv.2020.138095.

  89. Costa F, Lago A, Rocha V, Barros Ó, Costa L, Vipotnik Z, et al. A review on biological processes for pharmaceuticals wastes abatement—a growing threat to modern society. Environ Sci Technol. 2019;53:7185–202. https://doi.org/10.1021/acs.est.8b06977.

    Article  CAS  Google Scholar 

  90. Gogoi A, Mazumder P, Tyagi VK, Chaminda GT, An AK, Kumar M. Occurrence and fate of emerging contaminants in water environment: a review. Groundw Sustain Dev. 2018;6:169–80. https://doi.org/10.1016/j.gsd.2017.12.009.

    Article  Google Scholar 

  91. Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater. 2017;323:274–98. https://doi.org/10.1016/j.jhazmat.2016.04.045.

    Article  CAS  Google Scholar 

  92. Foteinis S, Monteagudo JM, Durán A, Chatzisymeon E. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale. Sci Total Environ. 2018;612:605–12. https://doi.org/10.1016/j.scitotenv.2017.08.277.

    Article  CAS  Google Scholar 

  93. Cincinelli A, Martellini T, Coppini E, Fibbi D, Katsoyiannis A. Nanotechnologies for removal of pharmaceuticals and personal care products from water and wastewater. A review J Nanosci Nanotechnol. 2015;15:3333–47. https://doi.org/10.1166/jnn.2015.10036.

    Article  CAS  Google Scholar 

  94. Wieszczycka K, Staszak K, Woźniak-Budych MJ, Litowczenko J, Maciejewska BM, Jurga S. Surface functionalization–the way for advanced applications of smart materials. Coord Chem Rev. 2021;436:213846. https://doi.org/10.1016/j.ccr.2021.213846.

  95. Kunduru KR, Nazarkovsky M, Farah S, Pawar RP, Basu A, Domb AJ. 2 - Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. In Water Purification Grumezescu A M Ed. Academic Press: 2017;33–74. https://doi.org/10.1016/B978-0-12-804300-4.00002-2.

  96. Gehrke I, Geiser A, Somborn-Schulz A. Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl. 2015;8:1. https://doi.org/10.2147/NSA.S43773.

  97. Alvarez PJJ, Chan CK, Elimelech M, Halas NJ, Villagrán D. Emerging opportunities for nanotechnology to enhance water security. Nat Nanotechnol. 2018;13:634–41. https://doi.org/10.1038/s41565-018-0203-2.

    Article  CAS  Google Scholar 

  98. Saxena R, Saxena M, Lochab A. Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater. ChemistrySelect. 2020;5:335–53. https://doi.org/10.1002/slct.201903542.

    Article  CAS  Google Scholar 

  99. Thakur K, Kandasubramanian B. Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data. 2019;64:833–67. https://doi.org/10.1021/acs.jced.8b01057.

    Article  CAS  Google Scholar 

  100. Vieira WT, De Farias MB, Spaolonzi MP, Da Silva MGC, Vieira MGA. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review Environ Chem Lett. 2020;18:1113–43. https://doi.org/10.1007/s10311-020-01000-1.

    Article  CAS  Google Scholar 

  101. Kataria N, Chauhan AK, Garg VK, Kumar P. Sequestration of heavy metals from contaminated water using magnetic carbon nanocomposites. J Hazard Mater Adv. 2022;6:100066. https://doi.org/10.1016/j.envpol.2022.120319 .

  102. Chauhan AK, Kataria N, Gupta R, Garg VK. Biogenic fabrication of ZnO@ EC and MgO@ EC using eucalyptus leaf extract for the removal of hexavalent chromium Cr (VI) ions from water. Environ. Sci Pollut Res. 2003;1–18. https://doi.org/10.1007/s11356-022-24967-6.

  103. Adel Niaei H, Rostamizadeh M. Adsorption of metformin from an aqueous solution by Fe-ZSM-5 nano-adsorbent: isotherm, kinetic and thermodynamic studies. J Chem Thermodyn. 2020;142:106003. https://doi.org/10.1016/j.jct.2019.106003.

  104. Song Z, Ma Y-L, Li C-E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Sci Total Environ. 2019;651:580–90. https://doi.org/10.1016/j.scitotenv.2018.09.240.

    Article  CAS  Google Scholar 

  105. Qu Z, Dong G, Zhu S, Yu Y, Huo M, Xu K, et al. Recycling of groundwater treatment sludge to prepare nano-rod erdite particles for tetracycline adsorption. J Clean Prod. 2020;257:120462. https://doi.org/10.1016/j.jclepro.2020.120462.

  106. Kim S, Gholamirad F, Yu M, Park CM, Jang A, Jang M, et al. Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene. Chem Eng J. 2021;406:126789. https://doi.org/10.1016/j.cej.2020.126789.

  107. Aljeboree AM. Removal of vitamin B6 (Pyridoxine) antibiotics pharmaceuticals from aqueous systems by ZnO. Int J Drug Deliv Technol. 2019;9:125–129. https://doi.org/10.25258/ijddt.9.2.3.

  108. Husein DZ, Hassanien R, Al-Hakkani MF. Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon. 2019;5(8):e02339. https://doi.org/10.1016/j.heliyon.2019.e02339.

  109. El Mouchtari EM, Daou C, Rafqah S, Najjar F, Anane H, Piram A, et al. TiO2 and activated carbon of Argania Spinosa tree nutshells composites for the adsorption photocatalysis removal of pharmaceuticals from aqueous solution. J Photochem Photobiol A Chem. 2020;388:112183. https://doi.org/10.1016/j.jphotochem.2019.112183.

  110. Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH. Fixed bed adsorption column studies and models for removal of ibuprofen from aqueous solution by strong adsorbent nano-clay composite. J Environ Health Sci Eng. 2019;17:753–65. https://doi.org/10.1007/s40201-019-00392-9.

    Article  CAS  Google Scholar 

  111. Saxena R, Saxena M, Lochab A. Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater. ChemistrySelect. 2020;5(1):335–53. https://doi.org/10.1002/slct.201903542.

    Article  CAS  Google Scholar 

  112. Talaiekhozani A, Joudaki S, Banisharif F, Eskandari Z, Cho J, Moghadam G, et al. Comparison of azithromycin removal from water using UV radiation, Fe (VI) oxidation process and ZnO nanoparticles. Int J Environ Res Public Health. 2020;17:1758. https://doi.org/10.3390/ijerph17051758.

    Article  CAS  Google Scholar 

  113. Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manage. 2018;219:189–207. https://doi.org/10.1016/j.jenvman.2018.04.103.

    Article  CAS  Google Scholar 

  114. Niu L, Wei T, Li Q, Zhang G, **an G, Long Z, et al. Ce-based catalysts used in advanced oxidation processes for organic wastewater treatment: a review. J Environ Sci. 2020;96:109–16. https://doi.org/10.1016/j.jes.2020.04.033.

    Article  CAS  Google Scholar 

  115. Chakma S, Dinesh GK, Chakraborty S, Moholkar VS. Investigation in sono-photocatalysis process using doped catalyst and ferrite nanoparticles for wastewater treatment. In Nanophotocatalysis Environ App. Springer: 2020;171–194. https://doi.org/10.1007/978-3-030-12619-3_7.

  116. Rayaroth MP, Aravind UK, Aravindakumar CT. Degradation of pharmaceuticals by ultrasound-based advanced oxidation process. Environ Chem Lett. 2016;14:259–90. https://doi.org/10.1007/s10311-016-0568-0.

    Article  CAS  Google Scholar 

  117. Yang X, Chen Z, Zhao W, Liu C, Qian X, Zhang M, et al. Recent advances in photodegradation of antibiotic residues in water. Chem Eng J. 2021;405:126806. https://doi.org/10.1016/j.cej.2020.126806.

  118. Jain K, Patel AS, Pardhi VP, Flora SJS. Nanotechnology in wastewater management: a new paradigm towards wastewater treatment. Molecules. 2021;26(6):1797. https://doi.org/10.3390/molecules26061797.

    Article  CAS  Google Scholar 

  119. Jeffryes C, Agathos SN, Rorrer G. Biogenic nanomaterials from photosynthetic microorganisms. Curr Opin Biotechnol. 2015;33:23–31. https://doi.org/10.1016/j.copbio.2014.10.005.

    Article  CAS  Google Scholar 

  120. Karim AV, Shriwastav A. Degradation of ciprofloxacin using photo, sono, and sonophotocatalytic oxidation with visible light and low-frequency ultrasound: Degradation kinetics and pathways. Chem Eng J. 2020;392:124853. https://doi.org/10.1016/j.cej.2020.124853.

  121. Bampos G, Frontistis Z. Sonocatalytic degradation of butylparaben in aqueous phase over Pd/C nanoparticles. Environ Sci Pollut Res. 2019;26:11905–19. https://doi.org/10.1007/s11356-019-04604-5.

    Article  CAS  Google Scholar 

  122. Khodadadi M, Hossein Panahi A, Al-Musawi TJ, Ehrampoush MH, Mahvi AH. The catalytic activity of FeNi3@SiO2 magnetic nanoparticles for the degradation of tetracycline in the heterogeneous Fenton-like treatment method. J Water Process Eng. 2019;32:100943. https://doi.org/10.1016/j.jwpe.2019.100943.

  123. Hassani A, Khataee A, Karaca S, Karaca C, Gholami P. Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason Sonochem. 2017;35:251–62. https://doi.org/10.1016/j.ultsonch.2016.09.027.

    Article  CAS  Google Scholar 

  124. Hassani A, Karaca M, Karaca S, Khataee A, Açışlı Ö, Yılmaz B. Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. J Environ Manage. 2018;211:53–62. https://doi.org/10.1016/j.jenvman.2018.01.014.

    Article  CAS  Google Scholar 

  125. Baruah A, Chaudhary V, Malik R, Tomer VK. 17 - Nanotechnology based solutions for wastewater treatment. In Nanotechnol in Water Wastewater Treatment Ahsan A Ismail A F Eds. Elsevier: 2019;337–368. https://doi.org/10.1016/B978-0-12-813902-8.00017-4.

  126. Saikia J, Gogoi A, Baruah S. Nanotechnology for water remediation. In Environ Nanotechnol. Springer: 2019;195–211. https://doi.org/10.1007/978-3-319-98708-8_7.

  127. Thirunavukkarasu A, Nithya R, Sivashankar R. A review on the role of nanomaterials in the removal of organic pollutants from wastewater. Rev Environ Sci Biotechnol. 2020;19:751–78. https://doi.org/10.1007/s11157-020-09548-8.

    Article  CAS  Google Scholar 

  128. Guo H, Dai R, **e M, Peng LE, Yao Z, Yang Z, et al. Tweak in puzzle: tailoring membrane chemistry and structure toward targeted removal of organic micropollutants for water reuse. Environ Sci Technol Lett. 2022;9(4):247–57. https://doi.org/10.1021/acs.estlett.2c00094.

    Article  CAS  Google Scholar 

  129. Manikandan S, Subbaiya R, Saravanan M, Ponraj M, Selvam M, Pugazhendhi A. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere. 2022;289:132867. https://doi.org/10.1016/j.memsci.2019.117672.

  130. Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA. Remediation of wastewater using various nano-materials. Arab J Chem. 2019;12:4897–919. https://doi.org/10.1016/j.arabjc.2016.10.004.

    Article  CAS  Google Scholar 

  131. Khan NA, Khan SU, Ahmed S, Farooqi IH, Dhingra A, Hussain A, et al. Applications of nanotechnology in water and wastewater treatment: a review. Asian J Water Environ Pollut. 2019;16:81–6.

    Article  Google Scholar 

  132. Rafique M, Tahir MB, Sadaf I. Nanotechnology: an innovative way for wastewater treatment and purification. In Adv Res Nanosci for Water Technol. Springer: 2019;95–131. https://doi.org/10.1007/978-3-030-02381-2_5.

  133. Tang CY, Yang Z, Guo H, Wen JJ, Nghiem LD, Cornelissen E. Potable water reuse through advanced membrane technology. 2018. https://doi.org/10.1021/acs.est.8b00562.

    Article  Google Scholar 

  134. Taheri E, Hadi S, Amin MM, Ebrahimi A, Fatehizadeh A, Aminabhavi TM. Retention of atenolol from single and binary aqueous solutions by thin film composite nanofiltration membrane: transport modeling and pore radius estimation. J Environ Manage. 2020;271:111005. https://doi.org/10.1016/j.jenvman.2020.111005.

  135. Bhattacharya P, Mukherjee D, Deb N, Swarnakar S, Banerjee S. Application of green synthesized ZnO nanoparticle coated ceramic ultrafiltration membrane for remediation of pharmaceutical components from synthetic water: reusability assay of treated water on seed germination. J Environ Chem Eng. 2020;8:103803. https://doi.org/10.1016/j.jece.2020.103803.

  136. Huang Z, Gong B, Huang C-P, Pan S-Y, Wu P, Dang Z, et al. Performance evaluation of integrated adsorption-nanofiltration system for emerging compounds removal: exemplified by caffeine, diclofenac and octylphenol. J Environ Manage. 2019;231:121–8. https://doi.org/10.1016/j.jenvman.2018.09.092.

    Article  CAS  Google Scholar 

  137. Karimnezhad H, Navarchian AH, Tavakoli Gheinani T, Zinadini S. Amoxicillin removal by Fe-based nanoparticles immobilized on polyacrylonitrile membrane: effects of input parameters and optimization by response surface methodology. Chem Eng Process. 2020;147:107785. https://doi.org/10.1016/j.cep.2019.107785.

  138. Licona KPM, Geaquinto LRDO, Nicolini JV, Figueiredo NG, Chiapetta SC, Habert AC, et al. Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. J Water Process Eng. 2018;25:195–204. https://doi.org/10.1016/j.jwpe.2018.08.002.

    Article  Google Scholar 

  139. Ganiyu SO, Van Hullebusch ED, Cretin M, Esposito G, Oturan MA. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol. 2015;156:891–914. https://doi.org/10.1016/j.seppur.2015.09.059.

    Article  CAS  Google Scholar 

  140. Mestre AS, Carvalho AP. Photocatalytic degradation of pharmaceuticals carbamazepine, diclofenac, and sulfamethoxazole by semiconductor and carbon materials: a review. Molecules. 2019;24:3702. https://doi.org/10.3390/molecules24203702.

    Article  CAS  Google Scholar 

  141. Fawzi Suleiman Khasawneh O, Palaniandy P. Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: a review. Environ Technol Innov. 2021;21:101230. https://doi.org/10.1016/j.eti.2020.101230.

  142. Singh DV, Bhat RA, Dervash MA, Qadri H, Mehmood MA, Dar GH, et al. Wonders of nanotechnology for remediation of polluted aquatic environs. In Fresh Water Pollut Dynamics and Remediation. Springer: 2020;319–339. https://doi.org/10.1007/978-981-13-8277-2_17.

  143. Majumder S, Chatterjee S, Basnet P, Mukherjee J. ZnO based nanomaterials for photocatalytic degradation of aqueous pharmaceutical waste solutions – a contemporary review. Environ Nanotechnol Monit Manag. 2020;14:100386. https://doi.org/10.1016/j.enmm.2020.100386.

  144. Uheida A, Mohamed A, Belaqziz M, Nasser WS. Photocatalytic degradation of Ibuprofen, Naproxen, and Cetirizine using PAN-MWCNT nanofibers crosslinked TiO2-NH2 nanoparticles under visible light irradiation. Sep Purif Technol. 2019;212:110–8. https://doi.org/10.1016/j.seppur.2018.11.030.

    Article  CAS  Google Scholar 

  145. Asgari E, Farzadkia M, Esrafili A, Badi MY, Jokandan SF, Sobhi HR. Application of a photocatalytic ozonation process using TiO2 magnetic nanoparticles for the removal of Ceftazide from aqueous solutions: evaluation of performance, comparative study and mechanism. Optik. 2020;212:164667. https://doi.org/10.1016/j.ijleo.2020.164667.

  146. Beheshti F, Tehrani RM, Khadir A. Sulfamethoxazole removal by photocatalytic degradation utilizing TiO2 and WO3 nanoparticles as catalysts: analysis of various operational parameters. Int J Environ Sci Technol. 2019;16:7987–96. https://doi.org/10.1007/s13762-019-02212-x.

    Article  CAS  Google Scholar 

  147. Babu BR, Venkatesan P, Kanimozhi R, Basha CA. Removal of pharmaceuticals from wastewater by electrochemical oxidation using cylindrical flow reactor and optimization of treatment conditions. J Environ Sci Health A. 2009;44:985–94. https://doi.org/10.1080/10934520902996880.

    Article  CAS  Google Scholar 

  148. Brillas E, Sirés I. Electrochemical removal of pharmaceuticals from water streams: reactivity elucidation by mass spectrometry. TrAC - Trends Anal Chem. 2015;70:112–21. https://doi.org/10.1016/j.trac.2015.01.013.

    Article  CAS  Google Scholar 

  149. Domínguez JR, González T, Palo P, Sánchez-Martín J, Rodrigo MA, Sáez C. Electrochemical degradation of a real pharmaceutical effluent. Water Air Soil Pollut. 2012;223:2685–94. https://doi.org/10.1007/s11270-011-1059-3.

    Article  CAS  Google Scholar 

  150. Parashar A, Sikarwar S, Jain R. Removal of pharmaceuticals from wastewater using magnetic iron oxide nanoparticles (IOPs). Int J Environ Anal Chem. 2022;102:117–33. https://doi.org/10.1080/03067319.2020.1716977.

    Article  CAS  Google Scholar 

  151. Chen M, Ren L, Qi K, Li Q, Lai M, Li Y, et al. Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. Bioresour Technol. 2020;311:123579.https://doi.org/10.1016/j.biortech.2020.123579.

  152. Motoc S, Manea F, Pop A, Pode R, Teodosiu C. Electrochemical degradation of pharmaceutical effluents on carbon-based electrodes. Environ Eng Manag J. 2012;11.

  153. García-Espinoza JD, Nacheva PM. Degradation of pharmaceutical compounds in water by oxygenated electrochemical oxidation: parametric optimization, kinetic studies and toxicity assessment. Sci Total Environ. 2019;691:417–29. https://doi.org/10.1016/j.scitotenv.2019.07.118.

    Article  CAS  Google Scholar 

  154. Moreira FC, Soler J, Alpendurada MF, Boaventura RAR, Brillas E, Vilar VJP. Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes. Water Res. 2016;105:251–63. https://doi.org/10.1016/j.watres.2016.08.036.

    Article  CAS  Google Scholar 

  155. Al-Musawi TJ, Mahvi AH, Khatibi AD, Balarak D. Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron (III) oxide magnetic nanoparticles. J Porous Mater. 2021;28(3):835–52. https://doi.org/10.1007/s10934-021-01039-7.

    Article  CAS  Google Scholar 

  156. Kollarahithlu SC, Balakrishnan RM. Adsorption of pharmaceuticals pollutants, Ibuprofen, Acetaminophen, and Streptomycin from the aqueous phase using amine functionalized superparamagnetic silica nanocomposite. J Clean Prod. 2021;294:126155. https://doi.org/10.1016/j.jclepro.2021.126155.

  157. Ahmadpour N, Sayadi MH, Sobhani S, Hajiani M. Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. J Environ Manage. 2020;271:110964. https://doi.org/10.1016/j.jenvman.2020.110964.

  158. Campos S, Salazar R, Arancibia-Miranda N, Rubio MA, Aranda M, García A, et al. Nafcillin degradation by heterogeneous electro-Fenton process using Fe. Cu and Fe/Cu nanoparticles Chemosphere. 2020;247:125813. https://doi.org/10.1016/j.chemosphere.2020.125813.

  159. González-Labrada K, Richard R, Andriantsiferana C, Valdés H, Jáuregui-Haza UJ, Manero M-H. Enhancement of ciprofloxacin degradation in aqueous system by heterogeneous catalytic ozonation. Environ Sci Pollut Res. 2020;27:1246–55. https://doi.org/10.1007/s11356-018-3559-9.

    Article  CAS  Google Scholar 

  160. Gholizadeh AM, Zarei M, Ebratkhahan M, Hasanzadeh A, Vafaei F. Removal of Phenazopyridine from wastewater by merging biological and electrochemical methods via Azolla filiculoides and electro-Fenton process. J Environ Manage. 2020;254:109802. https://doi.org/10.1016/j.jenvman.2019.109802.

  161. Guo H, Li Z, Zhang Y, Jiang N, Wang H, Li J. Degradation of chloramphenicol by pulsed discharge plasma with heterogeneous Fenton process using Fe3O4 nanocomposites. Sep Purif Technol. 2020;253:117540. https://doi.org/10.1016/j.seppur.2020.117540.

  162. Malakootian M, Nasiri A, Amiri Gharaghani M. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem Eng Commun. 2020;207:56–72. https://doi.org/10.1080/00986445.2019.1573168.

    Article  CAS  Google Scholar 

  163. Nasseh N, Arghavan FS, Rodriguez-Couto S, Hossein Panahi A, Esmati M, A-Musawi TJ. Preparation of activated carbon@ZnO composite and its application as a novel catalyst in catalytic ozonation process for metronidazole degradation. Adv Powder Technol. 2020;31:875–85. https://doi.org/10.1016/j.apt.2019.12.006.

    Article  CAS  Google Scholar 

  164. Olusegun SJ, Mohallem NDS. Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles. Environ Pollut. 2020;260:114019. https://doi.org/10.1016/j.envpol.2020.114019.

    Article  CAS  Google Scholar 

  165. Tran TV, Nguyen DTC, Le HTN, Vo D-VN, Nanda S, Nguyen TD. Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J Environ Sci. 2020;93:137–50. https://doi.org/10.1016/j.jes.2020.02.007.

    Article  CAS  Google Scholar 

  166. Beheshti F, Tehrani RM, Khadir A. Sulfamethoxazole removal by photocatalytic degradation utilizing TiO2 and WO3 nanoparticles as catalysts: analysis of various operational parameters. International J Environ Sci Technol. 2019;16:7987–96. https://doi.org/10.1007/s13762-019-02212-x.

    Article  CAS  Google Scholar 

  167. Mora-Gomez J, Ortega E, Mestre S, Pérez-Herranz V, García-Gabaldón M. Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Sep Purif Technol. 2019;208:68–75. https://doi.org/10.1016/j.seppur.2018.05.017.

    Article  CAS  Google Scholar 

  168. Soltani RDC, Mashayekhi M, Naderi M, Boczkaj G, Jorfi S, Safari M. Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst. Ultrason Sonochem. 2019;55:117–24. https://doi.org/10.1016/j.ultsonch.2019.03.009.

    Article  CAS  Google Scholar 

  169. Seid-Mohammadi A, Asgarai G, Ghorbanian Z, Dargahi A. The removal of cephalexin antibiotic in aqueous solutions by ultrasonic waves/hydrogen peroxide/nickel oxide nanoparticles (US/H2O2/NiO) hybrid process. Sep Sci Technol. 2020;55:1558–68. https://doi.org/10.1080/01496395.2019.1603241.

    Article  CAS  Google Scholar 

  170. Sani ON, Yazdani M, Taghavi M. Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters. J Water Process Eng. 2019;32: 100894.

    Article  Google Scholar 

  171. Murgolo S, Franz S, Arab H, Bestetti M, Falletta E, Mascolo G. Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Water Res. 2019;164:114920. https://doi.org/10.1016/j.watres.2019.114920.

  172. Mohammed AA, Al-Musawi TJ, Kareem SL, Zarrabi M, Al-Ma’abreh AM. Simultaneous adsorption of tetracycline, amoxicillin, and ciprofloxacin by pistachio shell powder coated with zinc oxide nanoparticles. Arab J Chem. 2020;13:4629–43. https://doi.org/10.1016/j.arabjc.2019.10.010.

    Article  CAS  Google Scholar 

  173. Yazdani A, Sayadi M, Heidari A. Sonocatalyst efficiency of palladium-graphene oxide nanocomposite for ibuprofen degradation from aqueous solution. J Water Environ Nanotechnol. 2019;4:333–42.

    Google Scholar 

  174. Zhou H, Wu S, Zhou Y, Yang Y, Zhang J, Luo L, et al. Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH. Environ Int. 2019;128:77–88. https://doi.org/10.1016/j.envint.2019.04.006.

    Article  CAS  Google Scholar 

  175. Zhi D, Wang J, Zhou Y, Luo Z, Sun Y, Wan Z, et al. Development of ozonation and reactive electrochemical membrane coupled process: enhanced tetracycline mineralization and toxicity reduction. Chem Eng J. 2020;383:123149. https://doi.org/10.1016/j.cej.2019.123149.

  176. Ershadi Afshar L, Chaibakhsh N, Moradi-Shoeili Z. Treatment of wastewater containing cytotoxic drugs by CoFe2O4 nanoparticles in Fenton/ozone oxidation process. Sep Sci Technol. 2018;53:2671–82. https://doi.org/10.1080/01496395.2018.1461113.

    Article  CAS  Google Scholar 

  177. Liu K, Yu JC-C, Dong H, Wu JCS, Hoffmann MR. Degradation and mineralization of carbamazepine using an electro-fenton reaction catalyzed by magnetite nanoparticles fixed on an electrocatalytic carbon fiber textile cathode. Environ Sci Technol. 2018;52:12667–74. https://doi.org/10.1021/acs.est.8b03916.

    Article  CAS  Google Scholar 

  178. Khoshnamvand N, Ahmadi S, Mostafapour FK. Kinetic and isotherm studies on ciprofloxacin an adsorption using magnesium oxide nanopartices. J Appl Pharm Sci. 2017;7:079–083. https://doi.org/10.7324/JAPS.2017.71112.

  179. Saucier C, Karthickeyan P, Ranjithkumar V, Lima EC, Dos Reis GS, De Brum IAS. Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ Sci Pollut Res. 2017;24:5918–32. https://doi.org/10.1007/s11356-016-8304-7.

    Article  CAS  Google Scholar 

  180. Stan M, Lung I, Soran M-L, Leostean C, Popa A, Stefan M, et al. Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts. Process Saf Environ Prot. 2017;107:357–72. https://doi.org/10.1016/j.psep.2017.03.003.

    Article  CAS  Google Scholar 

  181. Attallah OA, Al-Ghobashy MA, Nebsen M, Salem MY. Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis. RSC Adv. 2016;6:11461–80. https://doi.org/10.1039/C5RA23452B.

    Article  CAS  Google Scholar 

  182. Hassan M, Naidu R, Du J, Liu Y, Qi F. Critical review of magnetic biosorbents: their preparation, application, and regeneration for wastewater treatment. Sci Total Environ. 2020;702:134893. https://doi.org/10.1016/j.scitotenv.2019.134893.

  183. Farzadkia M, Esrafili A, Baghapour MA, Shahamat YD, Okhovat N. Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process. Desalination Water Treat. 2014;52:4947–52. https://doi.org/10.1080/19443994.2013.810322.

    Article  CAS  Google Scholar 

  184. Malik SN, Khan SM, Ghosh PC, Vaidya AN, Kanade G, Mudliar SN. Treatment of pharmaceutical industrial wastewater by nano-catalyzed ozonation in a semi-batch reactor for improved biodegradability. Sci Total Environ. 2019;678:114–22. https://doi.org/10.1016/j.scitotenv.2019.04.097.

    Article  CAS  Google Scholar 

  185. Ahmadi M, Ramezani Motlagh H, Jaafarzadeh N, Mostoufi A, Saeedi R, Barzegar G, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J Environ Manage. 2017;186:55–63. https://doi.org/10.1016/j.jenvman.2016.09.088.

    Article  CAS  Google Scholar 

  186. Zhang L, Zhao X, Niu C, Tang N, Guo H, Wen X, et al. Enhanced activation of peroxymonosulfate by magnetic Co3MnFeO6 nanoparticles for removal of carbamazepine: efficiency, synergetic mechanism and stability. Chem Eng J. 2019;362:851–64. https://doi.org/10.1016/j.cej.2019.01.078.

    Article  CAS  Google Scholar 

  187. Rosman N, Salleh WNW, Mohamed MA, Jaafar J, Ismail AF, Harun Z. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. J Colloid Interface Sci. 2018;532:236–60. https://doi.org/10.1016/j.jcis.2018.07.118.

    Article  CAS  Google Scholar 

  188. Kumari S, Khan AA, Chowdhury A, Bhakta AK, Mekhalif Z, Hussain S. Efficient and highly selective adsorption of cationic dyes and removal of ciprofloxacin antibiotic by surface modified nickel sulfide nanomaterials: kinetics, isotherm and adsorption mechanism. Colloids Surf. A Physicochem Eng Asp. 2020;586:124264. https://doi.org/10.1016/j.colsurfa.2019.124264.

  189. Guan Y-F, Marcos-Hernández M, Lu X, Cheng W, Yu H-Q, Elimelech M, et al. Silica removal using magnetic iron–aluminum hybrid nanomaterials: measurements, adsorption mechanisms, and implications for silica scaling in reverse osmosis. Environ Sci Technol. 2019;53:13302–11.

    Article  Google Scholar 

Download references

Acknowledgements

One of the author Navish Katraia gratefully acknowledged the funding support as seed grant award (letter no. R&D/SG/2020-21/169) by J C Bose University, YMCA, Haryana (India) and UGC Start-up Grant (letter no. No.F.30-589/2021 BSR) by UGC, New Delhi, for the research work. This study was funded by the Fundamental Research Grant Scheme, Malaysia [FRGS/1/2019/STG05/UNIM/02/2] and MyPAIR-PHC-Hibiscus Grant [MyPAIR/1/2020/STG05/UNIM//1].

Author information

Authors and Affiliations

Authors

Contributions

Sandeep Kumar and Sangita Yadav: Writing – original draft, Writing – review & editing. Navish Kataria: Conceptualization, Supervision, Validation, Data curation, Funding acquisition, Investigation. Kuan Shiong Khoo: Supervision, Validation, Writing – review & editing. Amit Kumar Chauhan and Seema Joshi: Data curation, Formal analysis, Investigation, Visualization. Renuka Gupta and Parmod Kumar: Conceptualization, Visualization. Jun Wei Roy Chong: Supervision, Validation, Writing – review & editing, Pau Loke Show: Funding acquisition, Supervision, Validation.

Corresponding authors

Correspondence to Navish Kataria, Kuan Shiong Khoo or Pau Loke Show.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water and Sediment Pollution

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Yadav, S., Kataria, N. et al. Recent Advancement in Nanotechnology for the Treatment of Pharmaceutical Wastewater: Sources, Toxicity, and Remediation Technology. Curr Pollution Rep 9, 110–142 (2023). https://doi.org/10.1007/s40726-023-00251-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-023-00251-0

Keywords

Navigation