Log in

Electrochemical Degradation of a Real Pharmaceutical Effluent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, the electrochemical treatment of an effluent from the pharmaceutical industry with boron-doped diamond electrodes was investigated. The electrolyses were carried out in a discontinuous operation mode under galvanostatic conditions, using a bench-scale plant equipped with a single-compartment electrochemical flow cell. The effect of operating conditions, such as current density (from 25.7 to 179.4 mA cm2) and flow rate (from 104.8 to 564.7 cm3 min−1), at residence times between 0 and 570 min, was studied. Design of experiments was used for optimizing the process. The global contribution of operative parameters and evolution of the residence time in TOC removal was studied, and a time of 77 min was obtained in order to evaluate the highest influence of the operative parameters. For this time, ANOVA test reported significance for four of the five involved variables. The current density was found to have a considerable positive effect on TOC removal, whereas the flow rate was found to have a moderate negative effect on target variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed Basha, C., Chithra, E., & Sripriyalakshmi, N. K. (2009). Electro-degradation and biological oxidation of non-biodegradable organic contaminants. Chemical Engineering Journal, 149, 25–34.

    Article  Google Scholar 

  • Bensalah, N., Quiroz Alfaro, M. A., & Martínez-Huitle, C. A. (2009). Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye. Chemical Engineering Journal, 149, 348–352.

    Article  CAS  Google Scholar 

  • Bhatia, S., Othman, Z., & Ahmad, A. L. (2007). Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant. Journal of Hazardous Materials, 145(1–3), 120–126.

    Article  CAS  Google Scholar 

  • Brillas, E., Calpe, J. C., & Casado, J. (2000). Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Research, 34, 2253–2262.

    Article  CAS  Google Scholar 

  • Carballa, M., Omil, F., Lema, J. M., Llompart, M., Garcia-Jares, C., Rodriguez, I., Gomez, M., & Ternes, A. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38, 2918–2926.

    Article  CAS  Google Scholar 

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41.

    Article  Google Scholar 

  • Chen, X., Gao, F., & Chen, G. (2005). Comparison of Ti/BDD and Ti/SnO2–Sb2O5 electrodes for pollutant oxidation. Journal of Applied Electrochemistry, 35(2), 185–191.

    Article  CAS  Google Scholar 

  • Deligiorgis, A., Xekoukoulotakis, N. P., Diamadopoulos, E., & Mantzavinos, D. (2008). Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes: Treatment optimization by factorial design. Water Research, 42, 1229–1237.

    Article  CAS  Google Scholar 

  • Domènech, X., Ribera, M., & Peral, J. (2011). Assessment of pharmaceuticals fate in a model environment. Water, Air, and Soil Pollution, 218, 413–422.

    Article  Google Scholar 

  • González, T., Domínguez, J. R., Palo, P., Sánchez-Martín, J., & Cuerda-Correa, E. (2011). Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution. Desalination, 280(1–3), 197–202.

    Article  Google Scholar 

  • Güven, G., Perendeci, A., & Tanyolaç, A. (2009). Chemical treatment of simulated beet sugar factory wastewater. Chemical Engineering Journal, 151, 149–159.

    Article  Google Scholar 

  • Lazic, Z. R. (2004). Design of experiments in chemical engineering. A practical guide. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Marselli, B., García-Gomez, J., Michaud, P. A., Rodrigo, M. A., & Comninellis, Ch. (2003). Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. Journal of the Electrochemical Society, 2003(150), D79–D83.

    Article  Google Scholar 

  • Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chemical Society Reviews, 35, 1324–1340.

    Article  Google Scholar 

  • Milani, A. S., Wang, H., Frey, D. D., & Abeyaratne, R. C. (2009). Evaluating three DOE methodologies: Optimization of a composite laminate under fabrication error. Quality Engineering, 21, 96–110.

    Article  Google Scholar 

  • Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New York: Wiley.

    Google Scholar 

  • Panizza, M., & Cerisola, G. (2005). Application of diamond electrodes to electrochemical processes. Electrochimica Acta, 51, 191–199.

    Article  CAS  Google Scholar 

  • Pérez-Estrada, L. A., Malato, S., Gernjak, W., Agüera, A., Thurman, E. M., Ferrer, I., & Fernández-Alba, A. R. (2005). Photo-Fenton degradation of diclofenac: Identification of main intermediates and degradation pathway. Environmental Science and Technology, 39, 8300–8306.

    Article  Google Scholar 

  • Petrović, M., Hernando, D., Díaz-Cruz, S., & Barceló, D. (2005). Liquid chromatography tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review. Journal of Chromatography A, 1067, 1–14.

    Article  Google Scholar 

  • Ragugnetti, M., Adams, M., Guimarães, A., Sponchiado, G., Carvalho-Vasconcellos, E., & Rivas-Oliveira, C. (2011). Ibuprofen genotoxicity in aquatic environment: An experimental model using Oreochromis niloticus. Water, Air, and Soil Pollution, 218, 361–364.

    Article  CAS  Google Scholar 

  • Rajkumar, D., & Palanivelu, K. (2004). Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials, 113(1–3), 123–129.

    Article  CAS  Google Scholar 

  • Scharf, S., Gans, O., Sattelberger, R. (2002). Arzneimittelwirkstoffe inm Zu- und Ablauf von Kläranlagen. Umweltbundesamt Wien. Report UBA-BE-201.

  • Sharma, V. K., & Mishra, S. K. (2006). Ferrate(VI) oxidation of Ibuprofen: A kinetic study. Environmental Chemical Letters, 3, 182–185.

    Article  CAS  Google Scholar 

  • StatPoint Technologies Inc. (2009). StatGraphics centurion XVI user manual. Virginia, USA.

  • Tarr, M. (Ed.). (2003). Chemical degradation methods for wastes and pollutants. Environmental and industrial applications. New York: Marcel-Dekker.

    Google Scholar 

  • Zwiener, C., & Frimmel, F. H. (2000). Oxidative treatment of pharmaceuticals in water. Water Research, 34, 1881–1885.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation has been supported by the Comisión Interministerial de Ciencia y Tecnología CTQ 2010-14823/PPQ project as well as the Junta de Extremadura under PRI-07A031 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sánchez-Martín.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 29 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez, J.R., González, T., Palo, P. et al. Electrochemical Degradation of a Real Pharmaceutical Effluent. Water Air Soil Pollut 223, 2685–2694 (2012). https://doi.org/10.1007/s11270-011-1059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-1059-3

Keywords

Navigation