Log in

Low-Temperature Insertion Bonding using Electroless Cu-Co-P Micro-Cones Array with Controllable Morphology

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Probable mechanisms for low-temperature insertion bonding were discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

We ensured that all data and materials support their published claims and comply with field standards.

References

  1. Sun, L., Chen, M.-h., Zhang, L., He, P., **e, L.-s.: Recent progress in SLID bonding in novel 3D-IC technologies. Journal of Alloys and Compounds 818 (2020). doi:https://doi.org/10.1016/j.jallcom.2019.152825

  2. Gu, T., Cheng, P., Wang, S., Wang, H., Dai, X., Wang, H., Ding, G.: Mechanical property evaluation of TSV-Cu micropillar by compression method. Electron. Mater. Lett. 10(4), 851–855 (2014). https://doi.org/10.1007/s13391-014-3286-4

    Article  CAS  Google Scholar 

  3. Ren, S., Sun, M., **, Z., Guo, Y., Ling, H., Hu, A.-M., Li, M.: Formation Mechanism of Novel Sidewall Intermetallic Compounds in Micron Level Sn/Ni/Cu Bumps. Electron. Mater. Lett. 15(5), 562–571 (2019). https://doi.org/10.1007/s13391-019-00154-7

    Article  CAS  Google Scholar 

  4. Sharma, A., Jung, D.-H., Roh, M.-H., Jung, J.P.: Fabrication and shear strength analysis of Sn-3.5Ag/Cu-filled TSV for 3D microelectronic packaging. Electron. Mater. Lett. 12(6), 856–863 (2016). https://doi.org/10.1007/s13391-016-6144-8

  5. Chen, K.N., Fan, A., Tan, C.S., Reif, R., Wen, C.Y.: Microstructure evolution and abnormal grain growth during copper wafer bonding. Appl. Phys. Lett. 81(20), 3774–3776 (2002). https://doi.org/10.1063/1.1521240

    Article  CAS  Google Scholar 

  6. Tofteberg, H.R., Schjølberg-Henriksen, K., Fasting, E.J., Moen, A.S., Taklo, M.M.V., Poppe, E.U., Simensen, C.J.: Wafer-level Au–Au bonding in the 350–450 °C temperature range. Journal of Micromechanics and Microengineering. 24(8) (2014). doi:https://doi.org/10.1088/0960-1317/24/8/084002

  7. Lee, Y.-K., Ko, Y.-H., Kim, J.-K., Lee, C.-W., Yoo, S.: The effect of intermetallic compound evolution on the fracture behavior of Au stud bumps joined with Sn-3.5Ag solder. Electron. Mater. Lett. 9(1), 31–39 (2013). https://doi.org/10.1007/s13391-012-2128-5

  8. Zhang, W., Ruythooren, W.: Study of the Au/In Reaction for Transient Liquid-Phase Bonding and 3D Chip Stacking. J. Electron. Mater. 37(8), 1095–1101 (2008). https://doi.org/10.1007/s11664-008-0487-3

    Article  CAS  Google Scholar 

  9. Tu, K.N., Zeng, K.: Tin–lead (SnPb) solder reaction in flip chip technology. Mater. Sci. Eng. R. Rep. 34(1), 1–58 (2001). https://doi.org/10.1016/S0927-796X(01)00029-8

    Article  Google Scholar 

  10. Park, M.S., Gibbons, S.L., Arróyave, R.: Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions. Acta Mater. 60(18), 6278–6287 (2012). https://doi.org/10.1016/j.actamat.2012.07.063

    Article  CAS  Google Scholar 

  11. Sohn, S., Moon, B., Lee, J., Kang, N., Moon, Y.: Interlayer Material Design Reducing Transient Liquid Phase Bonding Time. Electron. Mater. Lett. 16(2), 106–114 (2019). https://doi.org/10.1007/s13391-019-00191-2

    Article  CAS  Google Scholar 

  12. Tan, C.S., Lim, D.F., Ang, X.F., Wei, J., Leong, K.C.: Low temperature CuCu thermo-compression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement. Microelectron. Reliab. 52(2), 321–324 (2012). https://doi.org/10.1016/j.microrel.2011.04.003

    Article  CAS  Google Scholar 

  13. Panigrahy, A.K., Chen, K.-N.: Low temperature Cu–Cu bonding technology in three-dimensional integration: an extensive review. Journal of Electronic Packaging. 140(1) (2018). doi:https://doi.org/10.1115/1.4038392

  14. Chason, E., Jadhav, N., Chan, W.L., Reinbold, L., Kumar, K.S.: Whisker formation in Sn and Pb-Sn coatings: Role of intermetallic growth, stress evolution and plastic deformation processes. Appl. Phys. Lett. 92(17) (2008). doi:https://doi.org/10.1063/1.2912528

  15. Hosseinzaei, B., Kiani Rashid, A.R.: Transient liquid phase bonding in the Cu-Sn system. Soldering & Surface Mount Technology 31(4), 221–226 (2019). https://doi.org/10.1108/ssmt-09-2018-0031

    Article  Google Scholar 

  16. Luu, T.-T., Duan, A., Aasmundtveit, K.E., Hoivik, N.: Optimized Cu-Sn Wafer-Level Bonding Using Intermetallic Phase Characterization. J. Electron. Mater. 42(12), 3582–3592 (2013). https://doi.org/10.1007/s11664-013-2711-z

    Article  CAS  Google Scholar 

  17. Kannojia, H.K., Dixit, P.: Effect of surface roughness on void formation and intermetallic growth in electrodeposited Cu-Sn stacks. Materials Letters. 257 (2019). doi:https://doi.org/10.1016/j.matlet.2019.126710

  18. Chu, K., Sohn, Y., Moon, C.: A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding. Scripta Mater. 109, 113–117 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.032

    Article  CAS  Google Scholar 

  19. Wu, D., Tian, W., Wang, C., Huo, R., Wang, Y.: Research of Wafer Level Bonding Process Based on Cu-Sn Eutectic. Micromachines (Basel) 11(9) (2020). doi:https://doi.org/10.3390/mi11090789

  20. Cai, J., Wang, J., Wang, Q.: Experimental and computational investigation of low temperature Cu Sn solid-state-diffusion bonding for 3D integration. Microelectronic Engineering. 236 (2021). doi:https://doi.org/10.1016/j.mee.2020.111479

  21. Zhang, W.: Fine pitch Cu/Sn solid state diffusion bonding for advanced three-dimensional chip stacking. Japanese Journal of Applied Physics. 54(3) (2015). doi:https://doi.org/10.7567/jjap.54.030203

  22. Wang, J., Wang, Q., Liu, Z., Wu, Z., Cai, J., Wang, D.: Activation of electroplated-Cu surface via plasma pretreatment for low temperature Cu-Sn bonding in 3D interconnection. Appl. Surf. Sci. 384, 200–206 (2016). https://doi.org/10.1016/j.apsusc.2016.05.023

    Article  CAS  Google Scholar 

  23. Wang, J., Wang, Q., Wu, Z., Tan, L., Cai, J., Wang, D.: Plasma combined self-assembled monolayer pretreatment on electroplated-Cu surface for low temperature Cu–Sn bonding in 3D integration. Appl. Surf. Sci. 403, 525–530 (2017). https://doi.org/10.1016/j.apsusc.2017.01.207

    Article  CAS  Google Scholar 

  24. Koyama, S., Aoki, Y., Shohji, I.: Effect of Formic Acid Surface Modification on Bond Strength of Solid-State Bonded Interface of Tin and Copper. Mater. Trans. 51(10), 1759–1763 (2010). https://doi.org/10.2320/matertrans.MJ201019

    Article  CAS  Google Scholar 

  25. Lu, Q., Chen, Z., Zhang, W., Hu, A., Li, M.: Low-temperature solid state bonding method based on surface Cu–Ni alloying microcones. Appl. Surf. Sci. 268, 368–372 (2013). https://doi.org/10.1016/j.apsusc.2012.12.102

    Article  CAS  Google Scholar 

  26. Bulasara, V.K., Thakuria, H., Uppaluri, R., Purkait, M.K.: Combinatorial performance characteristics of agitated nickel hypophosphite electroless plating baths. J. Mater. Process. Technol. 211(9), 1488–1499 (2011). https://doi.org/10.1016/j.jmatprotec.2011.03.022

    Article  CAS  Google Scholar 

  27. Bulasara, V.K., Chandrashekar, O., Uppaluri, R.: Effect of surface roughness and mass transfer enhancement on the performance characteristics of nickel-hypophosphite electroless plating baths for metal–ceramic composite membrane fabrication. Chem. Eng. Res. Des. 89(11), 2485–2494 (2011). https://doi.org/10.1016/j.cherd.2011.04.007

    Article  CAS  Google Scholar 

  28. Kumar, A., Kumar Suhag, A., Singh, A., Sharma, S.K., Kumar, M., Kumar, D.: Deposition and characterization of amorphous electroless Ni-Co-P alloy thin film for ULSI application. Materials Research Express. 1(3) (2014). doi:https://doi.org/10.1088/2053-1591/1/3/035007

  29. Martins, J.I., Nunes, M.C.: On the kinetics of copper electroless plating with hypophosphite reductant. Surf. Eng. 32(5), 363–371 (2016). https://doi.org/10.1179/1743294415y.0000000066

    Article  CAS  Google Scholar 

  30. Biswas, A., Das, S.K., Sahoo, P.: Hardness, Friction and Wear Trends of Electroless Ni-W-P Coating Heat-Treated at Different Temperatures. In: Advances in Materials, Mechanical and Industrial Engineering. Lecture Notes on Multidisciplinary Industrial Engineering, pp. 83–105. (2019). doi: https://doi.org/10.1007/978-3-319-96968-8_5

  31. Buchtík, M., Doskočil, L., Brescher, R., Doležal, P., Másilko, J., Wasserbauer, J.: The Effect of Crystallization and Phase Transformation on the Mechanical and Electrochemical Corrosion Properties of Ni-P Coatings. Coatings. 11(4) (2021). doi:https://doi.org/10.3390/coatings11040447

  32. Keong, K.G., Sha, W., Malinov, S.: Hardness evolution of electroless nickel–phosphorus deposits with thermal processing. Surf. Coat. Technol. 168(2–3), 263–274 (2003). https://doi.org/10.1016/s0257-8972(03)00209-3

    Article  CAS  Google Scholar 

  33. Hou, L., Bi, S., Zhao, H., Xu, Y., Mu, Y., Lu, Y.: Electroless plating Cu-Co-P polyalloy on UV/ozonolysis irradiated polyethylene terephthalate film and its corrosion resistance. Appl. Surf. Sci. 403, 248–259 (2017). https://doi.org/10.1016/j.apsusc.2017.01.182

    Article  CAS  Google Scholar 

  34. Tseng, C.H., Tu, K.N., Chen, C.: Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding. Sci Rep 8(1), 10671 (2018). https://doi.org/10.1038/s41598-018-28812-0

    Article  CAS  Google Scholar 

  35. Lotfian, S., Molina-Aldareguia, J.M., Yazzie, K.E., Llorca, J., Chawla, N.: Mechanical Characterization of Lead-Free Sn-Ag-Cu Solder Joints by High-Temperature Nanoindentation. J. Electron. Mater. 42(6), 1085–1091 (2013). https://doi.org/10.1007/s11664-013-2517-z

    Article  CAS  Google Scholar 

  36. Hu, F., Yang, S., Wang, H., Hu, A., Li, M.: Electroless Silver Coating on Copper Microcones for Low-Temperature Solid-State Bonding. J. Electron. Mater. 44(11), 4516–4524 (2015). https://doi.org/10.1007/s11664-015-3930-2

    Article  CAS  Google Scholar 

  37. Wang, H., Leong, W.S., Hu, F., Ju, L., Su, C., Guo, Y., Li, J., Li, M., Hu, A., Kong, J.: Low-Temperature Copper Bonding Strategy with Graphene Interlayer. ACS Nano 12(3), 2395–2402 (2018). https://doi.org/10.1021/acsnano.7b07739

    Article  CAS  Google Scholar 

  38. Ju, L., Sun, M., Ye, L., Zhang, L., Hu, A., Li, M.: Effects of reduced graphene oxide film on bonding interfaces between Cu microcones and 25 μm Sn/Cu bumps. J. Mater. Sci.: Mater. Electron. 28(22), 17370–17377 (2017). https://doi.org/10.1007/s10854-017-7670-3

    Article  CAS  Google Scholar 

  39. Nguyen, Y.N., Kim, S., Bae, S.H., Son, I.: Enhancement of bonding strength in BiTe-based thermoelectric modules by electroless nickel, electroless palladium and immersion gold surface modification. Applied Surface Science. 545 (2021). doi:https://doi.org/10.1016/j.apsusc.2021.149005

  40. Hu, F., Wang, H., Yang, S., Hu, A., Li, M.: Effects of Ni–W(Au) coated Cu microcones on the bonding interfaces. Appl. Surf. Sci. 353, 774–780 (2015). https://doi.org/10.1016/j.apsusc.2015.06.195

    Article  CAS  Google Scholar 

  41. Qin, L., Zhuo, C., Liming, G., Ming, L.: Low-temperature bonding method based on metallic microcone array for interconnection application. In: 2012 14th International Conference on Electronic Materials and Packaging (EMAP), 13–16 Dec. 2012 2012, pp. 1–4. doi:https://doi.org/10.1109/EMAP.2012.6507901

  42. Xu, P., Hu, F., Shang, J., Hu, A., Li, M.: An ambient temperature ultrasonic bonding technology based on Cu micro-cone array for 3D packaging. Mater. Lett. 176, 155–158 (2016). https://doi.org/10.1016/j.matlet.2016.04.109

    Article  CAS  Google Scholar 

  43. Chen, Z., Cai, M., Liu, Z., Chen, Y., Yi, X., Wang, F., Zhu, W.: Amorphization and intermetallic nucleation in early-stage interfacial diffusion during Sn-solder/Ni solid-state bonding. J. Alloy. Compd. 859, 158399 (2021). https://doi.org/10.1016/j.jallcom.2020.158399

    Article  CAS  Google Scholar 

  44. Deng, X., Chawla, N., Chawla, K.K., Koopman, M.: Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation. Acta Mater. 52(14), 4291–4303 (2004). https://doi.org/10.1016/j.actamat.2004.05.046

    Article  CAS  Google Scholar 

  45. Huang, Y., Hang, T., Hu, A., Chen, Z., Lu, Q., Li, M.: Solid state diffusion between Sn and Cu microcones on Cu microcones. J. Alloy. Compd. 582, 408–413 (2014). https://doi.org/10.1016/j.jallcom.2013.08.076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (61376107, 62004124) and the National Basic Research Program of China (973 Program, 2015CB057200). We also thank the Instrumental Analysis Center of Shanghai Jiao Tong University for the use of the SEM equipment.

Author information

Authors and Affiliations

Authors

Contributions

Yaqian Sun: Writing—original draft, Data curation, Validation, Investigation, Visualization. **g Wang: Methodology, Writing—review & editing, Formal analysis. Xundi Zhang: Writing—review & editing, Formal analysis. Chenlin Yang: Formal analysis. Anmin Hu: Conceptualization, Supervision. Tao Hang: Writing—review & editing. Yunwen Wu: Writing—review & editing. Huiqin Ling: Writing—review & editing. Ming Li: Project administration.

Corresponding author

Correspondence to Anmin Hu.

Ethics declarations

Conflicts of interest

No conflict of interest and competing interests.

Ethical approval

We ensured that all authors obey the following guidelines and respect third parties’ rights such as copyright and/or moral rights.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, J., Zhang, X. et al. Low-Temperature Insertion Bonding using Electroless Cu-Co-P Micro-Cones Array with Controllable Morphology. Electron. Mater. Lett. 17, 459–470 (2021). https://doi.org/10.1007/s13391-021-00302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00302-y

Keywords

Navigation