Log in

Engineered tyrosinases with broadened bio-catalysis scope: immobilization using nanocarriers and applications

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Enzyme immobilization is a widely used technology for creating more stable, active, and reusable biocatalysts. The immobilization process also improves the enzyme's operating efficiency in industrial applications. Various support matrices have been designed and developed to enhance the biocatalytic efficiency of immobilized enzymes. Given their unique physicochemical attributes, including substantial surface area, rigidity, semi-conductivity, high enzyme loading, hyper catalytic activity, and size-assisted optical properties, nanomaterials have emerged as fascinating matrices for enzyme immobilization. Tyrosinase is a copper-containing monooxygenase that catalyzes the o-hydroxylation of monophenols to catechols and o-quinones. This enzyme possesses a wide range of uses in the medical, biotechnological, and food sectors. This article summarizes an array of nanostructured materials as carrier matrices for tyrosinase immobilization. Following a detailed background overview, various nanomaterials, as immobilization support matrices, including carbon nanotubes (CNTs), carbon dots (CDs), carbon black (CB), nanofibers, Graphene nanocomposite, platinum nanoparticles, nano-sized magnetic particles, lignin nanoparticles, layered double hydroxide (LDH) nanomaterials, gold nanoparticles (AuNPs), and zinc oxide nanoparticles have been discussed. Next, applied perspectives have been spotlights with particular reference to environmental pollutant sensing, phenolic compounds detection, pharmaceutical, and food industry (e.g., cereal processing, dairy processing, and meat processing), along with other miscellaneous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Aziz HM, Heikal YM (2021) Nanosensors for the detection of fertilizers and other agricultural applications. Nanosens Environ Food Agric 1:157–168

    Article  Google Scholar 

  • Abdollahi K, Yazdani F, Panahi R (2019) Fabrication of the robust and recyclable tyrosinase-harboring biocatalyst using ethylenediamine functionalized superparamagnetic nanoparticles: nanocarrier characterization and immobilized enzyme properties. J Biol Inorg Chem 24(7):943–959

    Article  CAS  PubMed  Google Scholar 

  • Aberg CM, Chen T, Olumide A, Raghavan SR, Payne GF (2004) Enzymatic grafting of peptides from casein hydrolysate to chitosan. Potential for value-added byproducts from food-processing wastes. J Agric Food Chem 52(4):788–793

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Pan C, Luo Z, Zhu J (2010) A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J Phys Chem C 114(20):9308–9313

    Article  CAS  Google Scholar 

  • Al-Rawi UA, Sher F, Hazafa A, Rasheed T, Al-Shara NK, Lima EC, Shanshool J (2020) Catalytic activity of Pt loaded zeolites for hydroisomerization of n-hexane using supercritical CO2. Ind Eng Chem Res 59(51):22092–22106

    Article  CAS  Google Scholar 

  • Amatatongchai M, Sroysee W, Chairam S, Nacapricha D (2015) Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes–PDDA–gold nanoparticles. Talanta 133:134–141

    Article  CAS  PubMed  Google Scholar 

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21(8):1405–1423

    Article  CAS  PubMed  Google Scholar 

  • Andre RS, Mercante LA, Facure MH, Pavinatto A, Correa DS (2021) Electrospun composite nanofibers as sensors for food analysis. Electrospun polymers and composites. Woodhead Publishing, pp 261–286

    Chapter  Google Scholar 

  • Anghileri A, Lantto R, Kruus K, Arosio C, Freddi G (2007) Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein–polysaccharide bioconjugates. J Biotechnol 127(3):508–519

    Article  CAS  PubMed  Google Scholar 

  • Anh TM, Dzyadevych SV, Van MC, Renault NJ, Duc CN, Chovelon JM (2004) Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta 63(2):365–370

    Article  CAS  PubMed  Google Scholar 

  • Apetrei IM, Apetrei C (2015) The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for assaying tyramine in fish products. J Food Eng 149:1–8

    Article  CAS  Google Scholar 

  • Arduini F, Amine A, Majorani C, Di Giorgio F, De Felicis D, Cataldo F, Palleschi G (2010a) High performance electrochemical sensor based on modified screen-printed electrodes with cost-effective dispersion of nanostructured carbon black. Electrochem Commun 12(3):346–350

    Article  CAS  Google Scholar 

  • Arduini F, Amine A, Moscone D, Palleschi G (2010b) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B 1 detection. Microchim Acta 170(3–4):193–214

    Article  CAS  Google Scholar 

  • Arduini F, Majorani C, Amine A, Moscone D, Palleschi G (2011) Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochim Acta 56(11):4209–4215

    Article  CAS  Google Scholar 

  • Arduini F, Di Nardo F, Amine A, Micheli L, Palleschi G, Moscone D (2012) Carbon black-modified screen-printed electrodes as electroanalytical tools. Electroanalysis 24(4):743–751

    Article  CAS  Google Scholar 

  • Ates S, Cortenlioglu E, Bayraktar E, Mehmetoglu U (2007) Production of L-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor. Enzyme Microb Technol 40(4):683–687

    Article  CAS  Google Scholar 

  • Baccar ZM, Caballero D, Eritja R, Errachid A (2012) Development of an impedimetric DNA-biosensor based on layered double hydroxide for the detection of long ssDNA sequences. Electrochim Acta 74:123–129

    Article  CAS  Google Scholar 

  • Baluta S, Lesiak A, Cabaj J (2020) Simple and cost-effective electrochemical method for norepinephrine determination based on carbon dots and tyrosinase. Sensors 20(16):4567

    Article  CAS  PubMed Central  Google Scholar 

  • Barbosa O, Torres R, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R (2013) Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromol 14(8):2433–2462

    Article  CAS  Google Scholar 

  • Barry S, O’Riordan A (2016) Electrochemical nanosensors: advances and applications. Rep Electrochem 6:1–14

    Google Scholar 

  • Basiuk EV, Huerta L, Basiuk VA (2019) Noncovalent bonding of 3d metal (II) phthalocyanines with single-walled carbon nanotubes: a combined DFT and XPS study. Appl Surf Sci 470:622–630

    Article  CAS  Google Scholar 

  • Bernal C, Rodriguez K, Martinez R (2018) Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol Adv 36(5):1470–1480

    Article  CAS  PubMed  Google Scholar 

  • Bezerra RM, Neto DMA, Galvão WS, Rios NS, Carvalho ACLDM, Correa MA, Gonçalves LR (2017) Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochem Eng J 125:104–115

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Cheng H, Yan Y, Iqbal HM (2019) Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Crit Rev Biotechnol 39(2):202–219

    Article  CAS  PubMed  Google Scholar 

  • Bizzarri BM, Martini A, Serafini F, Aversa D, Piccinino D, Botta L, Saladino R (2017) Tyrosinase mediated oxidative functionalization in the synthesis of DOPA-derived peptidomimetics with anti-Parkinson activity. RSC Adv 7(33):20502–20509

    Article  CAS  Google Scholar 

  • Bommarius AS, Riebel-Bommarius BR (2004) Biocatalysis: fundamentals and applications. John Wiley & Sons

    Book  Google Scholar 

  • Bonet-San-Emeterio M, Algarra M, Petković M, Del Valle M (2020) Modification of electrodes with N-and S-doped carbon dots Evaluation of the electrochemical response. Talanta 212:120806

    Article  CAS  PubMed  Google Scholar 

  • Botta G, Bizzarri BM, Garozzo A, Timpanaro R, Bisignano B, Amatore D, Saladino R (2015) Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses. Bioorg Med Chem 23(17):5345–5351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botta L, Bizzarri BM, Crucianelli M, Saladino R (2017) Advances in biotechnological synthetic applications of carbon nanostructured systems. J Mater Chem B 5(32):6490–6510

    Article  CAS  PubMed  Google Scholar 

  • Bozzini T, Botta G, Delfino M, Onofri S, Saladino R, Amatore D, Palamara AT (2013) Tyrosinase and layer-by-layer supported tyrosinases in the synthesis of lipophilic catechols with antiinfluenza activity. Bioorg Med Chem 21(24):7699–7708

    Article  CAS  PubMed  Google Scholar 

  • Branzoi V, Branzoi F, Cioaca B, Pilan LN (2010) Highly sensitive amperometric biosensors for phenols based on polyaniline/carbon nanotube composite modified electrodes. In: ECS Meeting Abstracts (No. 42, p. 1827). IOP Publishing.

  • Bucur B, Munteanu FD, Marty JL, Vasilescu A (2018) Advances in enzyme-based biosensors for pesticide detection. Biosensors 8(2):27

    Article  PubMed Central  CAS  Google Scholar 

  • Camargo JR, Baccarin M, Raymundo-Pereira PA, Campos AM, Oliveira GG, Fatibello-Filho O, Janegitz BC (2018) Electrochemical biosensor made with tyrosinase immobilized in a matrix of nanodiamonds and potato starch for detecting phenolic compounds. Anal Chim Acta 1034:137–143

    Article  CAS  PubMed  Google Scholar 

  • Capecchi E, Piccinino D, Delfino I, Bollella P, Antiochia R, Saladino R (2018) Functionalized tyrosinase-lignin nanoparticles as sustainable catalysts for the oxidation of phenols. Nanomaterials 8(6):438

    Article  PubMed Central  CAS  Google Scholar 

  • Capecchi E, Piccinino D, Bizzarri BM, Avitabile D, Pelosi C, Colantonio C, Saladino R (2019) Enzyme-Lignin nanocapsules are sustainable catalysts and vehicles for the preparation of unique polyvalent bioinks. Biomacromol 20(5):1975–1988

    Article  CAS  Google Scholar 

  • Carvalho GM, Alves TLM, Freire DM (2000) L-DOPA production by immobilized tyrosinase. Appl Biochem Biotechnol 84(1):791–800

    Article  PubMed  Google Scholar 

  • Cerrato-Alvarez M, Bernalte E, Bernalte-García MJ, Pinilla-Gil E (2019) Fast and direct amperometric analysis of polyphenols in beers using tyrosinase-modified screen-printed gold nanoparticles biosensors. Talanta 193:93–99

    Article  CAS  PubMed  Google Scholar 

  • Chaimuangyong S, Changkawprom M, Preechaworapun A, Tangkuaram T (2019) Tyrosinase immobilized on poly (diallyldimethylammonium chloride) capped gold nanoparticles composite with carbon nanotubes as dopamine biosensor.

  • Chen J, ** Y (2010) Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Microchim Acta 169(3–4):249–254

    Article  CAS  Google Scholar 

  • Chen T, Embree HD, Wu LQ, Payne GF (2002) In vitro protein–polysaccharide conjugation: Tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 64(6):292–302

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Qin X, Zeng G (2017a) Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotechnol 35(9):836–846

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zeng G, Xu P, Lai C, Tang L (2017b) How do enzymes ‘meet’nanoparticles and nanomaterials? Trends Biochem Sci 42(11):914–930

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Zheng G, Shi Q, Zhao R, Chen M (2018) Preparation of thiolated calix [8] arene/AuNPs/MWCNTs modified glassy carbon electrode and its electrocatalytic oxidation toward paracetamol. Sens Actuators, B Chem 277:289–296

    Article  CAS  Google Scholar 

  • Cho IH, Kim DH, Park S (2020) Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomaterials Research 24(1):1–12

    Article  CAS  Google Scholar 

  • Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol Adv 33(7):1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Chung Y, Christwardana M, Tannia DC, Kim KJ, Kwon Y (2017) Biocatalyst including porous enzyme cluster composite immobilized by two-step crosslinking and its utilization as enzymatic biofuel cell. J Power Sources 360:172–179

    Article  CAS  Google Scholar 

  • Cortina-Puig M, Muñoz-Berbel X, Calas-Blanchard C, Marty JL (2010) Diazonium-functionalized tyrosinase-based biosensor for the detection of tea polyphenols. Microchim Acta 171(1–2):187–193

    Article  CAS  Google Scholar 

  • Cunha MR, Lima EC, Lima DR, da Silva RS, Thue PS, Seliem MK, Larsson SH (2020) Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated carbon derived from Butia catarinensis. J Environ Chem Eng 8(6):104506

    Article  CAS  Google Scholar 

  • Das R, Mishra H, Srivastava A, Kayastha AM (2017) Covalent immobilization of β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: a gateway to boost enzyme application. Chem Eng J 328:215–227

    Article  CAS  Google Scholar 

  • Das R, Talat M, Srivastava ON, Kayastha AM (2018) Covalent immobilization of peanut β-amylase for producing industrial nano-biocatalysts: a comparative study of kinetics, stability and reusability of the immobilized enzyme. Food Chem 245:488–499

    Article  CAS  PubMed  Google Scholar 

  • Deng P, Fei J, Zhang J, Feng Y (2011) Determination of trace aluminum by anodic adsorptive strip** voltammetry using a multi-walled carbon nanotube modified carbon paste electrode. Anal Lett 44(8):1521–1535

    Article  CAS  Google Scholar 

  • Dinçer A, Becerik S, Aydemir T (2012) Immobilization of tyrosinase on chitosan–clay composite beads. Int J Biol Macromol 50(3):815–820

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Gu L, Dong W, Yu H (2016) Epoxidation modification of renewable lignin to improve the corrosion performance of epoxy coating. Int J Electrochem Sci 11(7):6256–6265

    Article  CAS  Google Scholar 

  • Ding X, Niu Y, Zhang G, Xu Y, Li J (2020) Electrochemistry in carbon-based quantum dots. Chemistry 15(8):1214–1224

    CAS  Google Scholar 

  • dos Santosa VP, Silvaa LM, Salgadoa AM, Pereirab KS (2013) Application of Agaricus bisporus extract for benzoate sodium detection based on tyrosinase inhibition for biosensor development. Chem Eng 32:2

    Google Scholar 

  • Du H, Ye J, Zhang J, Huang X, Yu C (2011) A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. J Electroanal Chem 650(2):209–213

    Article  CAS  Google Scholar 

  • Du Y, Gao J, Zhou L, Ma L, He Y, Huang Z, Jiang Y (2017) Enzyme nanocapsules armored by metal-organic frameworks: A novel approach for preparing nanobiocatalyst. Chem Eng J 327:1192–1197

    Article  CAS  Google Scholar 

  • Etemadi F, Hashemi M, Randhir R, ZandVakili O, Ebadi A (2018) Accumulation of L-DOPA in various organs of faba bean and influence of drought, nitrogen stress, and processing methods on L-DOPA yield. Crop J 6(4):426–434

    Article  Google Scholar 

  • Feng J, Yu S, Li J, Mo T, Li P (2016) Enhancement of the catalytic activity and stability of immobilized aminoacylase using modified magnetic Fe3O4 nanoparticles. Chem Eng J 286:216–222

    Article  CAS  Google Scholar 

  • Fujieda N, Umakoshi K, Ochi Y, Nishikawa Y, Yanagisawa S, Kubo M, Itoh S (2020) Copper-oxygen dynamics in the tyrosinase mechanism. Angew Chem 132(32):13487–13492

    Article  Google Scholar 

  • Glusac J, Davidesko-Vardi I, Isaschar-Ovdat S, Kukavica B, Fishman A (2018) Gel-like emulsions stabilized by tyrosinase-crosslinked potato and zein proteins. Food Hydrocolloids 82:53–63

    Article  CAS  Google Scholar 

  • Gradilone A, Cigna E, Agliano AM, Frati L (2010) Tyrosinase expression as a molecular marker for investigating the presence of circulating tumor cells in melanoma patients. Curr Cancer Drug Targets 10(5):529–538

    Article  CAS  PubMed  Google Scholar 

  • Gu BX, Xu CX, Zhu GP, Liu SQ, Chen LY, Li XS (2009) Tyrosinase immobilization on ZnO nanorods for phenol detection. J Phys Chem B 113(1):377–381

    Article  CAS  PubMed  Google Scholar 

  • Guazzaroni M, Pasqualini M, Botta G, Saladino R (2012) A novel synthesis of bioactive catechols by layer-by-layer immobilized tyrosinase in an organic solvent medium. ChemCatChem 4(1):89–99

    Article  CAS  Google Scholar 

  • Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Subst Biotechnol 39(2):98–109

    Article  CAS  Google Scholar 

  • Gupta S, Murthy CN, Prabha CR (2018) Recent advances in carbon nanotube based electrochemical biosensors. Int J Biol Macromol 108:687–703

    Article  CAS  PubMed  Google Scholar 

  • Han E, Shan D, Xue H, Cosnier S (2007) Hybrid material based on chitosan and layered double hydroxides: characterization and application to the design of amperometric phenol biosensor. Biomacromol 8(3):971–975

    Article  CAS  Google Scholar 

  • Han J, Xu X, Rao X, Wei M, Evans DG, Duan X (2011) Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors. J Mater Chem 21(7):2126–2130

    Article  CAS  Google Scholar 

  • Han R, Cui L, Ai S, Yin H, Liu X, Qiu Y (2012) Amperometric biosensor based on tyrosinase immobilized in hydrotalcite-like compounds film for the determination of polyphenols. J Solid State Electrochem 16(2):449–456

    Article  CAS  Google Scholar 

  • Hidouri S, Baccar ZM, Abdelmelek H, Noguer T, Marty JL, Campàs M (2011) Structural and functional characterisation of a biohybrid material based on acetylcholinesterase and layered double hydroxides. Talanta 85(4):1882–1887

    Article  CAS  PubMed  Google Scholar 

  • Hiremath SD, Priyadarshi B, Banerjee M, Chatterjee A (2020) Carbon dots-MnO2 based turn-on fluorescent probe for rapid and sensitive detection of hydrazine in water. J Photochem Photobiol A Chem 389:112258

    Article  CAS  Google Scholar 

  • Husain Q (2017) High yield immobilization and stabilization of oxidoreductases using magnetic nanosupports and their potential applications: an update. Curr Catal 6(3):168–187

    Article  CAS  Google Scholar 

  • Ibáñez-Redín G, Silva TA, Vicentini FC, Fatibello-Filho O (2018) Effect of carbon black functionalization on the analytical performance of a tyrosinase biosensor based on glassy carbon electrode modified with dihexadecylphosphate film. Enzyme Microb Technol 116:41–47

    Article  PubMed  CAS  Google Scholar 

  • Ilesanmi OS, Adewale IO (2020) Physicochemical properties of free and immobilized tyrosinase from different species of yam (Dioscorea spp). Biotechnol Rep 27:e00499

    Article  Google Scholar 

  • Jankowska K, Zdarta J, Grzywaczyk A, Kijeńska-Gawrońska E, Biadasz A, Jesionowski T (2020) Electrospun poly (methyl methacrylate)/polyaniline fibres as a support for laccase immobilisation and use in dye decolourisation. Environ Res 184:109332

    Article  CAS  PubMed  Google Scholar 

  • Jawaid S, Khan TH, Osborn HM, Williams NAO (2009) Tyrosinase activated melanoma prodrugs. Anti-Cancer Agents Med Chem 9(7):717–727

    Article  CAS  Google Scholar 

  • Kaur R, Uppal SK (2015) Structural characterization and antioxidant activity of lignin from sugarcane bagasse. Colloid Polym Sci 293(9):2585–2592

    Article  CAS  Google Scholar 

  • Khan M, Husain Q, Bushra R (2017) Immobilization of β-galactosidase on surface modified cobalt/multiwalled carbon nanotube nanocomposite improves enzyme stability and resistance to inhibitor. Int J Biol Macromol 105:693–701

    Article  CAS  PubMed  Google Scholar 

  • Khoshnevisan K, Vakhshiteh F, Barkhi M, Baharifar H, Poor-Akbar E, Zari N, Bordbar AK (2017) Immobilization of cellulase enzyme onto magnetic nanoparticles: applications and recent advances. Mol Catal 442:66–73

    Article  CAS  Google Scholar 

  • Kim KI, Lee JC, Robards K, Choi SH (2010) Immobilization of tyrosinase in carboxylic and carbonyl group-modified MWNT electrode and its application for sensing phenolics in red wines. J Nanosci Nanotechnol 10(6):3790–3798

    Article  CAS  PubMed  Google Scholar 

  • Kochana J, Wapiennik K, Kozak J, Knihnicki P, Pollap A, Woźniakiewicz M, Kościelniak P (2015) Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system. Talanta 144:163–170

    Article  CAS  PubMed  Google Scholar 

  • Kuilla T, Bhadra S, Yao D, Kim NH (2010) Saswata Bose, Joong Hee Lee. Prog Polym Sci 35:1350

    Article  CAS  Google Scholar 

  • Laranjo MT, Morawski FM, Dias SL, Benvenutti EV, Arenas LT, Costa TM (2019) Silica/titania graphite composite modified with chitosan and tyrosinase employed as a sensitive biosensor for phenolic compounds. J Braz Chem Soc 30(12):2660–2672

    CAS  Google Scholar 

  • Leskinen T, Witos J, Valle-Delgado JJ, Lintinen K, Kostiainen M, Wiedmer SK, Mattinen ML (2017) Adsorption of proteins on colloidal lignin particles for advanced biomaterials. Biomacromol 18(9):2767–2776

    Article  CAS  Google Scholar 

  • Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43(1):29–41

    Article  Google Scholar 

  • Li T, Shen X, Chen Y, Zhang C, Yan J, Yang H, Liu Y (2015) Polyetherimide-grafted Fe3O4@ SiO2 nanoparticles as theranostic agents for simultaneous VEGF siRNA delivery and magnetic resonance cell imaging. Int J Nanomed 10:4279

    Article  CAS  Google Scholar 

  • Li Y, Abedalwafa MA, Tang L, Wang L (2019) Electrospun nanofibers for sensors. Electrospinning: Nanofabrication and Applications. William Andrew Publishing, pp 571–601

    Chapter  Google Scholar 

  • Liang K, Fu X, Wu L, Qin Y, Song Y (2016) A novel tyrosinase biosensor based on graphene and Co3O4 nanocomposite materials for rapid determining catechol. Int J Electrochem Sci 11:250–258

    CAS  Google Scholar 

  • Liang S, Wu XL, **ong J, Zong MH, Lou WY (2020) Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord Chem Rev 406:213149

    Article  CAS  Google Scholar 

  • Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125(15):4430–4431

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Tang HL, Pan M (2006) Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells. Electrochim Acta 51(26):5721–5730

    Article  CAS  Google Scholar 

  • Liu T, Xu M, Yin H, Ai S, Qu X, Zong S (2011) A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides. Microchim Acta 175(1):129–135

    Article  CAS  Google Scholar 

  • Liu S, Höldrich M, Sievers-Engler A, Horak J, Lämmerhofer M (2017) Papain-functionalized gold nanoparticles as heterogeneous biocatalyst for bioanalysis and biopharmaceuticals analysis. Anal Chim Acta 963:33–43

    Article  CAS  PubMed  Google Scholar 

  • Liu DM, Chen J, Shi YP (2018) Tyrosinase immobilization on aminated magnetic nanoparticles by physical adsorption combined with covalent crosslinking with improved catalytic activity, reusability and storage stability. Anal Chim Acta 1006:90–98

    Article  CAS  PubMed  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1170

    Article  CAS  PubMed  Google Scholar 

  • Madhavan A, Sindhu R, Binod P, Sukumaran RK, Pandey A (2017) Strategies for design of improved biocatalysts for industrial applications. Biores Technol 245:1304–1313

    Article  CAS  Google Scholar 

  • Makhotkina O, Kilmartin PA (2010) The use of cyclic voltammetry for wine analysis: determination of polyphenols and free sulfur dioxide. Anal Chim Acta 668(2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Martín M, Salazar P, Villalonga R, Campuzano S, **arrón JM, González-Mora JL (2014) Preparation of core–shell Fe 3 O 4@ poly (dopamine) magnetic nanoparticles for biosensor construction. J Mater Chem B 2(6):739–746

    Article  PubMed  Google Scholar 

  • Martinazzo J, Muenchen DK, Brezolin AN, Cezaro AM, Rigo AA, Manzoli A, Steffens C (2018) Cantilever nanobiosensor using tyrosinase to detect atrazine in liquid medium. J Environ Sci Health B 53(4):229–236

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Alvarez O, Miranda-Hernandez M (2008) Characterisation of carbon pastes as matrices in composite electrodes for use in electrochemical capacitors. Carbon-Sci Tech 1:30–38

    CAS  Google Scholar 

  • Massolini G, Calleri E (2005) Immobilized trypsin systems coupled on-line to separation methods: Recent developments and analytical applications. J Sep Sci 28(1):7–21

    Article  CAS  PubMed  Google Scholar 

  • Matoba Y, Kihara S, Bando N, Yoshitsu H, Sakaguchi M, Kayama KE, Sugiyama M (2018) Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein. PLoS Biol 16(12):e3000077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattinen ML, Lantto R, Selinheimo E, Kruus K, Buchert J (2008) Oxidation of peptides and proteins by Trichoderma reesei and Agaricus bisporus tyrosinases. J Biotechnol 133(3):395–402

    Article  CAS  PubMed  Google Scholar 

  • Mercante LA, Scagion VP, Migliorini FL, Mattoso LH, Correa DS (2017) Electrospinning-based (bio) sensors for food and agricultural applications: A review. TrAC, Trends Anal Chem 91:91–103

    Article  CAS  Google Scholar 

  • Mercante LA, Iwaki LE, Scagion VP, Oliveira ON, Mattoso LH, Correa DS (2021) Electrochemical detection of bisphenol a by tyrosinase immobilized on electrospun nanofibers decorated with gold nanoparticles. Electrochem 2(1):41–49

    Article  Google Scholar 

  • Min K, Park GW, Yoo YJ, Lee JS (2019) A perspective on the biotechnological applications of the versatile tyrosinase. Bioresour Technol 289:121730

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Chiang KS (2020) Phenolic-compounds sensor based on immobilization of tyrosinase in polyacrylamide gel on long-period fiber grating. Opt Laser Technol 131:106464

    Article  CAS  Google Scholar 

  • Mohammadi A, Moghaddam AB, Hosseini S, Kazemzad M, Dinarvand R (2011) A norepinephrine biosensor based on a glassy carbon electrode modified with carbon nanotubes. Anal Methods 3(10):2406–2411

    Article  CAS  Google Scholar 

  • Monogioudi E, Faccio G, Lille M, Poutanen K, Buchert J, Mattinen ML (2011) Effect of enzymatic crosslinking of β-casein on proteolysis by pepsin. Food Hydrocolloids 25(1):71–81

    Article  CAS  Google Scholar 

  • Montereali MR, Della Seta L, Vastarella W, Pilloton R (2010) A disposable laccase-tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J Mol Catal B Enzym 64(3–4):189–194

    Article  CAS  Google Scholar 

  • Mphuthi NG, Adekunle AS, Ebenso EE (2016) Electrocatalytic oxidation of epinephrine and norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor. Sci Rep 6(1):1–20

    Article  CAS  Google Scholar 

  • Nadifiyine S, Haddam M, Mandli J, Chadel S, Blanchard CC, Marty JL, Amine A (2013) Amperometric biosensor based on tyrosinase immobilized on to a carbon black paste electrode for phenol determination in olive oil. Anal Lett 46(17):2705–2726

    Article  CAS  Google Scholar 

  • Nawaz A, Shafi T, Khaliq A, Mukht H (2017) Tyrosinase: sources, structure and applications. Int J Biotech Bioeng 3(5):142–148

    Google Scholar 

  • Notsu H, Tatsuma T, Fujishima A (2002) Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J Electroanal Chem 523(1–2):86–92

    Article  CAS  Google Scholar 

  • Orfanakis G, Patila M, Catzikonstantinou AV, Lyra KM, Kouloumpis A, Spyrou K, Stamatis H (2018) Hybrid nanomaterials of magnetic iron nanoparticles and graphene oxide as matrices for the immobilization of β-glucosidase: synthesis, characterization, and biocatalytic properties. Front Mater 5:25

    Article  Google Scholar 

  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Uses of laccases in the food industry. Enzyme Res 2010(2):2

    Google Scholar 

  • Pillaiyar T, Namasivayam V, Manickam M, Jung SH (2018) Inhibitors of melanogenesis: an updated review. J Med Chem 61(17):7395–7418

    Article  CAS  PubMed  Google Scholar 

  • Polak J, Jarosz-Wilkolazka A (2012) Structure/Redox potential relationship of simple organic compounds as potential precursors of dyes for laccase-mediated transformation. Biotechnol Prog 28(1):93–102

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshini E, Rawat K, Bohidar HB (2020) Multimode sensing of riboflavin via Ag@ carbon dot conjugates. Appl Nanosci 10(1):281–291

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Dixon R (2014) Valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843

    Article  PubMed  CAS  Google Scholar 

  • Razumiene J, Barkauskas J, Kubilius V, Meškys R, Laurinavičius V (2005) Modified graphitized carbon black as transducing material for reagentless H2O2 and enzyme sensors. Talanta 67(4):783–790

    Article  CAS  PubMed  Google Scholar 

  • Reza KK, Ali MA, Srivastava S, Agrawal VV, Biradar AM (2015) Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol A sensor. Biosens Bioelectron 74:644–651

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Méndez ML, Apetrei IM, Apretei C, Saja Sáez JAD (2013) Enzyme sensor based on carbon nanotubes/cobalt (II) phthalocyanine and tyrosinase used in pharmaceutical analysis

  • Rolff M, Schottenheim J, Decker H, Tuczek F (2011) Copper–O 2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem Soc Rev 40(7):4077–4098

    Article  CAS  PubMed  Google Scholar 

  • Samdani KJ, Samdani JS, Kim NH, Lee JH (2016) FeMoO4 based, enzyme-free electrochemical biosensor for ultrasensitive detection of norepinephrine. Biosens Bioelectron 81:445–453

    Article  CAS  PubMed  Google Scholar 

  • Sanz VC, Mena ML, González-Cortés A, Yanez-Sedeno P, **arrón JM (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528(1):1–8

    Article  CAS  Google Scholar 

  • Schroeder V, Savagatrup S, He M, Lin S, Swager TM (2018) Carbon nanotube chemical sensors. Chem Rev 119(1):599–663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan D, Cosnier S, Mousty C (2003) Layered double hydroxides: an attractive material for electrochemical biosensor design. Anal Chem 75(15):3872–3879

    Article  CAS  PubMed  Google Scholar 

  • Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25(6):1504–1508

    Article  CAS  PubMed  Google Scholar 

  • Sharifi M, Sohrabi MJ, Hosseinali SH, Hasan A, Kani PH, Talaei AJ, Falahati M (2020) Enzyme immobilization onto the nanomaterials: application in enzyme stability and prodrug-activated cancer therapy. Int J Biol Macromol 143:665–676

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Yang H, Ji S, Jiang S, Liu X, Zhang D (2015) Preparation and characterization of core-shell structure Fe3O4@ C magnetic nanoparticles. Proc Eng 102:1555–1562

    Article  CAS  Google Scholar 

  • Silva TA, Moraes FC, Janegitz BC, Fatibello-Filho O (2017) Electrochemical biosensors based on nanostructured carbon black: a review. J Nanomater

  • Soussou A, Gammoudi I, Moroté F, Kalboussi A, Cohen-Bouhacina T, Grauby-Heywang C, Baccar ZM (2017) Efficient immobilization of tyrosinase enzyme on layered double hydroxide hybrid nanomaterials for electrochemical detection of polyphenols. IEEE Sens J 17(14):4340–4348

    Article  CAS  Google Scholar 

  • Strobel KL, Pfeiffer KA, Blanch HW, Clark DS (2015) Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin. J Biol Chem 290(37):22818–22826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Hu S, Li L, **ang J, Sun W (2011) Sensitive electrochemical detection of hydroquinone with carbon ionogel electrode based on BMIMPF6. J Electroanal Chem 651(1):94–99

    Article  CAS  Google Scholar 

  • Tacias-Pascacio VG, Virgen-Ortíz JJ, Jiménez-Pérez M, Yates M, Torrestiana-Sanchez B, Rosales-Quintero A, Fernandez-Lafuente R (2017) Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: critical role of the immobilization support. Fuel 200:1–10

    Article  CAS  Google Scholar 

  • Talarico D, Arduini F, Constantino A, Del Carlo M, Compagnone D, Moscone D, Palleschi G (2015) Carbon black as successful screen-printed electrode modifier for phenolic compound detection. Electrochem Commun 60:78–82

    Article  CAS  Google Scholar 

  • Tan D, Zhao JP, Ran GQ, Zhu XL, Ding Y, Lu XY (2019) Highly efficient biocatalytic synthesis of l-DOPA using in situ immobilized V errucomicrobium spinosum tyrosinase on polyhydroxyalkanoate nano-granules. Appl Microbiol Biotechnol 103(14):5663–5678

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Huang R, Liu C, Yang S, Lu Z, Luo S (2013) Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite. Anal Methods 5(20):5508–5514

    Article  CAS  Google Scholar 

  • Tang R, Shi Y, Hou Z, Wei L (2017) Carbon nanotube-based chemiresistive sensors. Sensors 17(4):882

    Article  PubMed Central  CAS  Google Scholar 

  • Taratula O, Galoppini E, Wang D, Chu D, Zhang Z, Chen H, Lu Y (2006) Binding studies of molecular linkers to ZnO and MgZnO nanotip films. J Phys Chem B 110(13):6506–6515

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi T, Anzani C, Ferri M, Marzocchi S, Caboni MF, Monari S, Tassoni A (2021) Enzymatic digestion of calf fleshing meat by-products: antioxidant and anti-tyrosinase activity of protein hydrolysates, and identification of fatty acids. Foods 10(4):755

    Article  PubMed  PubMed Central  Google Scholar 

  • Temani M, Baccar ZM, Mansour HB (2014) Activity of cholesterol oxidase immobilized on layered double hydroxide nanomaterials for biosensor application: Acacia salicina scavenging power of hypercholesterolemia therapy. Microelectron Eng 126:165–168

    Article  CAS  Google Scholar 

  • Tembe S, Inamdar S, Haram S, Karve M, D’Souza SF (2007) Electrochemical biosensor for catechol using agarose–guar gum entrapped tyrosinase. J Biotechnol 128(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Tonelli D, Scavetta E, Giorgetti M (2013) Layered-double-hydroxide-modified electrodes: electroanalytical applications. Anal Bioanal Chem 405(2):603–614

    Article  CAS  PubMed  Google Scholar 

  • Topoglidis E, Cass AE, O’Regan B, Durrant JR (2001) Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem 517(1–2):20–27

    Article  CAS  Google Scholar 

  • Tucci M, Bombelli P, Howe CJ, Vignolini S, Bocchi S, Schievano A (2019) A storable mediatorless electrochemical biosensor for herbicide detection. Microorganisms 7(12):630

    Article  CAS  PubMed Central  Google Scholar 

  • Vaz FC, Silva TA, Fatibello-Filho O, Assumpção MH, Vicentini FC (2021) A novel carbon nanosphere-based sensor used for herbicide detection. Environ Technol Innov 2:101529

    Article  CAS  Google Scholar 

  • Velte CJ, Steinhilper R (2016) Complexity in a circular economy: a need for rethinking complexity management strategies. In Proceedings of the World Congress on Engineering, London, UK (Vol. 29).

  • Wahba MI (2017) Porous chitosan beads of superior mechanical properties for the covalent immobilization of enzymes. Int J Biol Macromol 105:894–904

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165(1–2):1–22

    Article  CAS  Google Scholar 

  • Wang B, Zhang J, Dong S (2000) Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosens Bioelectron 15(7–8):397–402

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Tian SP, Xu Y (2005) Effects of high oxygen concentration on pro-and anti-oxidant enzymes in peach fruits during postharvest periods. Food Chem 91(1):99–104

    Article  CAS  Google Scholar 

  • Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88(23):233106

    Article  CAS  Google Scholar 

  • Wang S, Tan Y, Zhao D, Liu G (2008a) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron 23(12):1781–1787

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhi L, Müllen K (2008b) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chen G, Zhao J, Cai N (2016) Catalase immobilization on amino-activated Fe3O4@ SiO2 nanoparticles: loading density affected activity recovery of catalase. J Mol Catal B Enzym 133:S468–S474

    Article  Google Scholar 

  • Wang Y, Wang H, Wang X, **ao Y, Zhou Y, Su X, Sun F (2020) Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: a critical review and update. Sci Total Environ 2:139034

    Article  CAS  Google Scholar 

  • Wang F, Xu Z, Wang C, Guo Z, Yuan Z, Kang H, Liu Y (2021) Biochemical characterization of a tyrosinase from Bacillus aryabhattai and its application. Int J Biol Macromol 176:37–46

    Article  CAS  PubMed  Google Scholar 

  • Wee Y, Park S, Kwon YH, Ju Y, Yeon KM, Kim J (2019) Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds. Biosens Bioelectron 132:279–285

    Article  CAS  PubMed  Google Scholar 

  • Wei A, Sun XW, Wang JX, Lei Y, Cai XP, Li CM, Huang W (2006) Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl Phys Lett 89(12):123902

    Article  CAS  Google Scholar 

  • Westereng B, Cannella D, Agger JW, Jørgensen H, Andersen ML, Eijsink VG, Felby C (2015) Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 5(1):1–9

    Article  CAS  Google Scholar 

  • **e W, Zang X (2017) Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: a magnetic biocatalyst for interesterification of soybean oil. Food Chem 227:397–403

    Article  CAS  PubMed  Google Scholar 

  • **ong F, Han Y, Wang S, Li G, Qin T, Chen Y, Chu F (2017) Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly. Ind Crops Prod 100:146–152

    Article  CAS  Google Scholar 

  • Yang L, Zhao H, Li Y, Li CP (2015) Electrochemical simultaneous determination of hydroquinone and p-nitrophenol based on host–guest molecular recognition capability of dual β-cyclodextrin functionalized Au@ graphene nanohybrids. Sens Actuators B Chem 207:1–8

    Article  CAS  Google Scholar 

  • Yang D, Wang X, Shi J, Wang X, Zhang S, Han P, Jiang Z (2016) In situ synthesized rGO–Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling. Biochem Eng J 105:273–280

    Article  CAS  Google Scholar 

  • Yang T, Zhan L, Huang CZ (2020) Recent insights into functionalized electrospun nanofibrous films for chemo-/bio-sensors. TrAC Trends Anal Chem 124:115813

    Article  CAS  Google Scholar 

  • Yao YL, Ding Y, Ye LS, **a XH (2006) Two-step pyrolysis process to synthesize highly dispersed Pt–Ru/carbon nanotube catalysts for methanol electrooxidation. Carbon 44(1):61–66

    Article  CAS  Google Scholar 

  • Yin H, Zhou Y, Xu J, Ai S, Cui L, Zhu L (2010) Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Anal Chim Acta 659(1–2):144–150

    Article  CAS  PubMed  Google Scholar 

  • Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115(7):2483–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Wang H, Jian M, Li Y, **a K, Zhang M, Zhang Y (2017) Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Appl Mater Interfaces 9(34):28596–28603

    Article  CAS  PubMed  Google Scholar 

  • Yin CM, Fan X, Liu C, Fan Z, Shi DF, Yao F, Gao H (2019) The antioxidant properties, tyrosinase and α-glucosidase inhibitory activities of phenolic compounds in different extracts from the golden oyster mushroom, Pleurotus citrinopileatus (Agaricomycetes). Int J Med Mushrooms 21:9

    Article  Google Scholar 

  • Zaidi KU, Ali AS, Ali SA, Naaz I (2014) Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem Res Int 2014(2):2

    Google Scholar 

  • Zehani N, Fortgang P, Lachgar MS, Baraket A, Arab M, Dzyadevych SV, Jaffrezic-Renault N (2015) Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosens Bioelectron 74:830–835

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lei J, Liu Y, Zhao J, Ju H (2009) Highly sensitive amperometric biosensors for phenols based on polyaniline–ionic liquid–carbon nanofiber composite. Biosens Bioelectron 24(7):1858–1863

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Kang J, Yang B, Zhao L, Hou Z, Tang B (2016) Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob. Chin J Catal 37(3):389–397

    Article  CAS  Google Scholar 

  • Zhou X, Qu Q, Wang L, Li L, Li S, **a K (2020) Nitrogen dozen carbon quantum dots as one dual function sensing platform for electrochemical and fluorescent detecting ascorbic acid. J Nanopart Res 22(1):1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Consejo Nacional de Ciencia y Tecnología (MX) is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M. N. Iqbal (CVU: 735340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Hafiz M. N. Iqbal.

Ethics declarations

Conflict of interests

The authors declare no conflicting interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Rafeeq, H., Qasim, M. et al. Engineered tyrosinases with broadened bio-catalysis scope: immobilization using nanocarriers and applications. 3 Biotech 11, 365 (2021). https://doi.org/10.1007/s13205-021-02913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02913-6

Keywords

Navigation