Log in

A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An amperometric biosensor is described for the detection of organophosphorus pesticides. It is based on the enzyme tyrosinase immobilized on platinum nanoparticles and the use of a glassy carbon electrode modified with graphene. Tyrosinase was immobilized on the electrode surface via electrostatic interaction between a monolayer of cysteamine and the enzyme. In the presence of catechol as a substrate, the pesticides chlorpyrifos, profenofos and malathion can be determined as a result of their inhibition of the enzyme which catalyzes the oxidation of catechol to o-quinone. Platinum nanoparticles and graphene effectively enhance the efficiency of the electrochemical reduction of o-quinone, thus improving sensitivity. Under optimum experimental conditions, the inhibition effect of the pesticides investigated is proportional to their concentrations in the lower ppb-range. The detection limits are 0.2, 0.8 and 3 ppb for chlorpyrifos, profenofos and malathion, respectively. The biosensor displays good repeatability and acceptable stability.

A tyrosinase-based biosensor was developed for determining organophosphorus pesticides. The biosensor owned high sensitivity by combining platinum nanoparticles and graphene, and the immobilized tyrosinase had a great affinity to catechol. Low detection limits and reasonable liner ranges were obtained. The biosensor also displayed good repeatability and acceptable stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vanloon GW (2001) Environmental chemistry—a global perspective. University Press, Oxford

    Google Scholar 

  2. Yin HS, Ai SY, Xu J, Shi W, Zhu L (2009) Amperometric biosensor based on immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim. J Electroanal Chem 637:21

    Article  CAS  Google Scholar 

  3. Jiang X, Li D, Xu X, Ying Y, Li Y, Ye Z, Wang J (2008) Immunosensors for detection of pesticide residues. Biosens Bioelectron 23:1577

    Article  CAS  Google Scholar 

  4. Padrón-Sanz C, Halko R, Sosa-Ferrera Z, Santana-Rodríguez JJ (2005) Combination of microwave assisted micellar extraction and liquid chromatography for the determination of organophosphorous pesticides in soil samples. J Chromatogr A 1078:13

    Article  Google Scholar 

  5. Tahboub YR, Zaater MF, Al-Talla ZA (2005) Determination of the limits of identification and quantitation of selected organochlorine and organophosphorous pesticide residues in surface water by full-scan gas chromatography/mass spectrometry. J Chromatogr A 1098:150

    Article  CAS  Google Scholar 

  6. Rial-Otero R, Gaspar EM, Moura I, Capelo JL (2007) Chromatographic-based methods for pesticide determination in honey: an overview. Talanta 71:503

    Article  CAS  Google Scholar 

  7. Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405

    Article  CAS  Google Scholar 

  8. Vakurov A, Simpson CE, Daly CL, Gibson TD, Millner PA (2005) Acetylecholinesterase-based biosensor electrodes for organophosphate pesticide detection: II. Immobilization and stabilization of acetylecholinesterase. Biosens Bioelectron 20:2324

    Article  CAS  Google Scholar 

  9. Arduini F, Ricci F, Tuta CS, Moscone D, Amine A, Palleschi G (2006) Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Anal Chim Acta 580:155

    Article  CAS  Google Scholar 

  10. Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta 170:193

    Article  CAS  Google Scholar 

  11. Trojanowicz M, Hitchman ML (1996) Determination of pesticides using electrochemical biosensors. Trends Anal Chem 15:38

    CAS  Google Scholar 

  12. Smit MH, Rechnitz GA (1993) Toxin detection using a tyrosinase-coupled oxygen electrode. Anal Chem 65:380

    Article  CAS  Google Scholar 

  13. Besombes J-L, Cosnier S, Labbé P, Reverdy G (1995) A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides. Anal Chim Acta 311:255

    Article  CAS  Google Scholar 

  14. Anh TM, Dzyadevych SV, Van MC, Renault NJ, Duc CN, Chovelon J-M (2004) Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta 63:365

    Article  CAS  Google Scholar 

  15. Tanimoto de Albuquerque YD, Ferreira LF (2007) Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes. Anal Chim Acta 596:210

    Article  CAS  Google Scholar 

  16. Solé S, Merkoçi A, Alegret S (2003) Determination of Toxic Substances Based on Enzyme Inhibition. Part I. Electrochemical Biosensors for the Determination of Pesticides Using Batch Procedures. Crit Rev Anal Chem 33:89

    Article  Google Scholar 

  17. Chen J, ** Y (2010) Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Microchim Acta 169:249

    Article  CAS  Google Scholar 

  18. Sánchez-Ferrer Á, Neptuno Rodríguez-López J, García-Cánovas F, García-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1

    Article  Google Scholar 

  19. Cortina-Puig M, Muñoz-Berbel X, Calas-Blanchard C, Marty J-L (2010) Diazonium-functionalized tyrosinase-based biosensor for the detection of tea polyphenols. Microchim Acta 171:187

    Article  CAS  Google Scholar 

  20. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nano 3:538

    Article  CAS  Google Scholar 

  21. Wang X, Zhi L, Mullen K (2007) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323

    Article  Google Scholar 

  22. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282

    Article  CAS  Google Scholar 

  23. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25:1504

    Article  CAS  Google Scholar 

  24. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901

    Article  CAS  Google Scholar 

  25. Zhou K, Zhu Y, Yang X, Luo J, Li C, Luan S (2010) A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim Acta 55:3055

    Article  CAS  Google Scholar 

  26. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1

    Article  CAS  Google Scholar 

  27. Y-l Y, Ding Y, Ye L-S, **a X-H (2006) Two-step pyrolysis process to synthesize highly dispersed Pt-Ru/carbon nanotube catalysts for methanol electrooxidation. Carbon 44:61

    Article  Google Scholar 

  28. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103

    Article  CAS  Google Scholar 

  29. Gomez S, Erades L, Philippot K, Chaudret B, Collière V, Balmes O, Bovin JO (2001) Platinum colloids stabilized by bifunctional ligands: self-organization and connection to gold. Chem Commun 1474:1475

    Google Scholar 

  30. Li Y, Wu Y (2009) Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J Am Chem Soc 131:5851

    Article  CAS  Google Scholar 

  31. Lin X, Li Y (2006) A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron 22:253

    Article  CAS  Google Scholar 

  32. Yildiz HB, Castillo J, Guschin DA, Toppare L, Schuhmann W (2007) Phenol biosensor based on electrochemically controlled integration of tyrosinase in a redox polymer. Microchim Acta 159:27

    Article  CAS  Google Scholar 

  33. Portaccio M, Di Tuoro D, Arduini F, Lepore M, Mita DG, Diano N, Mita L, Moscone D (2010) A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosens Bioelectron 25:2003

    Article  CAS  Google Scholar 

  34. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198

    Article  CAS  Google Scholar 

  35. Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens Bioelectron 23:1781

    Article  CAS  Google Scholar 

  36. Wang L, Ran Q, Tian Y, Ye S, Xu J, **an Y, Peng R, ** L (2010) Covalent grafting tyrosinase and its application in phenolic compounds detection. Microchim Acta 171:217

    Article  CAS  Google Scholar 

  37. Wang Y, Hasebe Y (2009) Carbon felt-based biocatalytic enzymatic flow-through detectors: chemical modification of tyrosinase onto amino-functionalized carbon felt using various coupling reagents. Talanta 79:1135

    Article  Google Scholar 

  38. Zamfir L-G, Rotariu L, Bala C (2011) A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Biosens Bioelectron 26:3692

    Article  CAS  Google Scholar 

  39. Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue. Talanta 74:613

    Article  CAS  Google Scholar 

  40. Imato T, Ishibashi N (1995) Potentiometric butyrylcholine sensor for organophosphate pesticides. Biosens Bioelectron 10:435

    Article  CAS  Google Scholar 

  41. Campanella L, Lelo D, Martini E, Tomassetti M (2007) Organophosphorus and carbamate pesticide analysis using an inhibition tyrosinase organic phase enzyme sensor; comparison by butyrylcholinesterase + choline oxidase opee and application to natural waters. Anal Chim Acta 587:22

    Article  CAS  Google Scholar 

  42. Du D, Ye X, Cai J, Liu J, Zhang A (2010) Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosens Bioelectron 25:2503

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21075078) and Natural Science Foundation of Shandong province, China (ZR2010BM005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyun Ai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

Electronic supplementary material (DOC 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Xu, M., Yin, H. et al. A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides. Microchim Acta 175, 129–135 (2011). https://doi.org/10.1007/s00604-011-0665-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0665-5

Keywords

Navigation