Log in

Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive tyrosinase biosensor, based on co-modifying tyrosinase and palygorskite on glassy carbon electrode, was developed for phenol analysis. Palygorskite, a kind of natural one-dimensional clay with good biocompatibility, high specific surface area and porous morphology, works as a perfect matrix of enzyme. Tyrosinase retains its inherent bioactivity when immobilized in palygorskite, which leads to a high sensitivity of 1.897 A mol−1 L. The sensor response achieves 95% of steady-state-current in no more than 3 s, and the linear range of the bioelectrode spans the concentration of phenol from 5 × 10−8 to 1 × 10−4 mol L−1 with a correlation coefficient of 0.9992. The results show no apparent decrease in the response over 2 weeks, and about 80% of the response was retained after 2 months when the electrode was stored at 4–5 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yong G, Leone C, Strothkamp KG (1990) Agaricus bisporus metapotyrosinase: preparation, characterization, and conversion to mixed-metal derivatives of the binuclear site. Biochemistry 29:9684

    Article  CAS  Google Scholar 

  2. Seo S, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837

    Article  CAS  Google Scholar 

  3. May SW (1999) Applications of oxidoreductases. Biotechnol 10:370

    CAS  Google Scholar 

  4. Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83

    Article  Google Scholar 

  5. Castillo M, Domingues R et al (1997) Persistence of selected pesticides and their phenolic transformation products in natural waters using off-line liquid solid extraction followed by liquid chromatographic techniques. Anal Chim Acta 353:133

    Article  CAS  Google Scholar 

  6. MacCrehan WA, Brown-Thomas JM (1987) Determination of phenols in petroleum crude oils using liquid chromatography with electrochemical detection. Anal Chem 59:477

    Article  CAS  Google Scholar 

  7. Berger TA, Daye JF (1991) Separation of phenols by packed column supercritical fluid chromatography. J Chromatogr Sci 29:54

    CAS  Google Scholar 

  8. Brage C, Sjöström K (1991) Separation of phenols and aromatic hydrocarbons from biomass tar using aminopropylsilane normal-phase liquid chromatography. J Chromatogr 538:303

    Article  CAS  Google Scholar 

  9. King WP, Joseph KT, Kissinger PT (1980) Liquid chromatography with amperometric detection for determining phenolic preservatives. J Assoc Anal Chem 63:137

    CAS  Google Scholar 

  10. Atlow SC, Bonadonna-Apro L, Klibanov AM (1984) Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase. Biotech Bioeng 26:599

    Article  CAS  Google Scholar 

  11. Vincent G, Angeletti G, Bjorseth A (eds) (1991) Organic micropollutants in the aquatic environment. Kluwer Academic, Dordrecht

    Google Scholar 

  12. Drinking Water Regulations and Health Advisories (1996) US Environmental Protection Agency, Office of Water, Washington, DC, EPA 822-B-96-002

  13. Streffer K, Kaatz H et al (1998) Application of a sensitive catechol detector for determination of tyrosinase inhibitors. Anal Chim Acta 362:81

    Article  CAS  Google Scholar 

  14. Huang TH, Kuwana T, Warsinke A (2002) Analysis of thiols with tyrosinase-modified carbon paste electrodes based on blocking of substrate recycling. Biosens Bioelectron 17:1107

    Article  CAS  Google Scholar 

  15. Streffer K, Katz H et al (1998) Application of a sensitive catechol detector for determination of tyrosinase inhibitors. Anal Chim Acta 362:81

    Article  CAS  Google Scholar 

  16. Kubo I, Kinst-Hori I et al (2000) Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 8:1749

    Article  CAS  Google Scholar 

  17. Serra B, Morales MD et al (2005) In-a-day electrochemical detection of coliforms in drinking water using a tyrosinase composite biosensor. Anal Biochem 336:8115

    Article  Google Scholar 

  18. Wang J, Chen L (1995) Hydrazine detection using a tyrosinase-based inhibition biosensor. Anal Chem 67:3824

    Article  CAS  Google Scholar 

  19. Yildiz HB, Castillo J et al (2007) Phenol biosensor based on electrochemically controlled integration of tyrosinase in a redox polymer. Microchimica Acta 159:27

    Article  CAS  Google Scholar 

  20. Ahuja T, Mir IA, Kumar D (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791

    Article  CAS  Google Scholar 

  21. Yu JH, Ju HX (2004) Pure organic phase phenol biosensor based on tyrosinase entrapped in a vapor deposited titania sol–gel membrane. Electroanalysis 16:1305

    Article  CAS  Google Scholar 

  22. Liu ZJ, Liu BH et al (2000) Probing trace phenols based on mediator-free alumina sol–gel-derived tyrosinase biosensor. Anal Chem 72:4707

    Article  CAS  Google Scholar 

  23. Wang B, Zhang J, Dong S (2000) Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosens Bioelectron 15:397

    Article  CAS  Google Scholar 

  24. Dempsey E, Diamond D, Collier A (2004) Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosens Bioelectron 20:367

    Article  CAS  Google Scholar 

  25. Mailley P, Cummings EA et al (2003) Composite carbon paste biosensor for phenolic derivatives based on in situ electrogenerated polypyrrole binder. Anal Chem 75:5422

    Article  CAS  Google Scholar 

  26. Chen J, Yu ZG et al (2008) Preparation of biofilm electrode with Xanthomonas sp. and carbon nanotubes and the application to rapid biochemical oxygen demand analysis in high-salt condition. Water Environ Res 80:699

    Article  CAS  Google Scholar 

  27. Bradley WF (1940) The structural scheme of attapulgite. Am Mineral 25:405

    CAS  Google Scholar 

  28. Miao SD, Liu ZM et al (2007) Ionic liquid-assisted immobilization of Rh on attapulgite and its application in cyclohexene hydrogenation. J Phys Chem C 111:2185

    Article  CAS  Google Scholar 

  29. Huang JH, Liu YF, Wang XG (2008) Influence of differently modified palygorskites in the immobilization of a lipase. J Mol Catal B 55:49

    Article  CAS  Google Scholar 

  30. The united states pharmacopoeis 30th ed, (2008) the united states pharmacopoeial convention

  31. Xu JM, Li W et al (2007) Direct electrochemistry of Cytochrome c on natural nano-attapulgite clay, modified electrode and its electrocatalytic reduction for H2O2. Electrochim Acta 52:3601

    Article  CAS  Google Scholar 

  32. Cummings EA, Linquette-Mailley S et al (2001) A comparison of amperometric screen-printed, carbon electrodes and their application to the analysis of phenolic compounds present in beers. Talanta 55:1015

    Article  CAS  Google Scholar 

  33. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamental and applications, 2nd edn. Wiley, New York

    Google Scholar 

  34. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198

    Article  CAS  Google Scholar 

  35. Fenool LG, Rodríguez-López JN et al (2002) Michaelis constants of mushroom tyrosinase with respect to oxygen in the presence of monophenols and diphenols. Int J Biochem Cell Biol 34:332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., **, Y. Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Microchim Acta 169, 249–254 (2010). https://doi.org/10.1007/s00604-010-0320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0320-6

Keywords

Navigation