Log in

Exploring Plasma-Induced Transparency: Coupling Plasmonic Waveguides with Resonators for Innovative Nanophotonic Applications

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel plasmonic structure is proposed to achieve plasmon-induced transparency (PIT), which is composed of a stub resonator (SR) and a square ring resonator (SRR). The research delves into the theoretical calculations and numerical simulations to explore the formation and evolution mechanisms of PIT. In this innovative structure, the evolution of PIT is notably influenced by geometric parameters, and its sensing performance in various environments is thoroughly examined. Furthermore, the study evaluates its potential applications in the domains of slow light and optical switches. Moreover, the introduction of an additional SR and SRR to the original structure leads to a multi-PIT phenomenon, and the underlying reasons for this phenomenon are elucidated. Meanwhile, the sensor sensitivity in air, alcohol, and glucose media is calculated to be improved by 12.5%, 12.7%, and 9.1%, respectively, compared with the previous work. This hybrid structure effectively enhances the overall performance of the plasmonic system in practical applications. Consequently, this proposed plasmonic structure introduces a fresh perspective for the development of multifunctional nanoscale optical devices, particularly in the realms of nanosensors, slow light technologies, optical storage, and optical switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

The data results come from COMSOL simulation results, and the material properties come from the COMSOL material library.

References

  1. Boller K, Imamolu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66:2593–2596. https://doi.org/10.1103/PhysRevLett.66.2593

    Article  CAS  PubMed  Google Scholar 

  2. Novikova I, Walsworth RL, **ao Y (2012) Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser Photonics Rev 6:333–353. https://doi.org/10.1002/lpor.201100021

    Article  Google Scholar 

  3. Cao G, Li H, Zhan S, He Z, Guo Z, Xu X, Yang H (2014) Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide. Opt Lett 39:216–219. https://doi.org/10.1364/OL.39.000216

    Article  PubMed  Google Scholar 

  4. Nurmohammadi T, Abbasian K, Yadipour R (2018) Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt Commun 410:142–147. https://doi.org/10.1016/j.optcom.2017.09.082

    Article  CAS  Google Scholar 

  5. Zhang ZD, Wang RB, Zhang ZY, Tang J, Zhang WD, Xue CY, Yan SB (2016) Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12:1007–1013. https://doi.org/10.1007/s11468-016-0352-9

    Article  CAS  Google Scholar 

  6. Zhou X, Zhang L, Pang W, Zhang H, Yang Q, Zhang D (2013) Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems. New J Phys 15:103033. https://doi.org/10.1088/1367-2630/15/10/103033

    Article  Google Scholar 

  7. Miyata M, Hirohata J, Nagasaki Y, Takahara J (2014) Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling. Opt Express 22:11399–11406. https://doi.org/10.1364/OE.22.011399

    Article  CAS  PubMed  Google Scholar 

  8. Papasimakis N, Fu YH, Fedotov VA, Prosvirnin SL, Tsai DP, Zheludev NI (2009) Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl Phys Lett 94. https://doi.org/10.1063/1.3138868

  9. Wang J, Yuan B, Fan C, He J, Ding P, Xue Q, Liang E (2013) A novel planar metamaterial design for electromagnetically induced transparency and slow light. Opt Express 21:25159–25166. https://doi.org/10.1364/OE.21.025159

    Article  PubMed  Google Scholar 

  10. Jia S, Wu Y, Wang X, Wang N (2014) A subwavelength focusing structure composite of nanoscale metallic slits array with patterned dielectric substrate. IEEE Photonics J 6:1–8. https://doi.org/10.1109/jphot.2014.2298406

    Article  Google Scholar 

  11. Totsuka K, Kobayashi N, Tomita M (2007) Slow light in coupled-resonator-induced transparency. Phys Rev Lett 98:213904. https://doi.org/10.1103/PhysRevLett.98.213904

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Li Z, Yue S, **ao J, Gong Q (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12:2494–2498. https://doi.org/10.1021/nl300659v

    Article  CAS  PubMed  Google Scholar 

  13. Xu Q, Sandhu S, Povinelli ML, Shakya J, Fan S, Lipson M (2006) Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett 96:123901. https://doi.org/10.1103/PhysRevLett.96.123901

    Article  CAS  PubMed  Google Scholar 

  14. He Z, Li H, Zhan S, Cao G, Li B (2014) Combined theoretical analysis for plasmon-induced transparency in waveguide systems. Opt Lett 39:5543–5546. https://doi.org/10.1364/OL.39.005543

    Article  PubMed  Google Scholar 

  15. Xu Y, Wu L, Ang LK (2019) Surface exciton polaritons: a promising mechanism for refractive-index sensing. Phys Rev Appl 12:024029. https://doi.org/10.1103/PhysRevApplied.12.024029

    Article  CAS  Google Scholar 

  16. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648. https://doi.org/10.1038/nphoton.2007.223

    Article  CAS  Google Scholar 

  17. Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37:3780–3782. https://doi.org/10.1364/OL.37.003780

    Article  PubMed  Google Scholar 

  18. Wang H, Yang J, Zhang J, Huang J, Wu W, Chen D, **ao G (2016) Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure. Opt Lett 41:1233–1236. https://doi.org/10.1364/OL.41.001233

    Article  PubMed  Google Scholar 

  19. Xu Y, Bai P, Zhou X, Akimov Y, Png CE, Ang LK, Knoll W, Wu L (2019) Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv Opt Mater 7:1801433. https://doi.org/10.1002/adom.201801433

    Article  CAS  Google Scholar 

  20. Qi Y, Ding J, Zhang T, Liu W, Wang L, Wang X (2021) Tunable Fano resonance in plasmonic MIM waveguide with P-shaped resonator for refractive index sensing. EPL (Europhysics Letters) 134:67001. https://doi.org/10.1209/0295-5075/134/67001

  21. Zhang Q, Huang X-G, Lin X-S, Tao J, ** X-P (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17:7549. https://doi.org/10.1364/OE.17.007549

    Article  CAS  Google Scholar 

  22. Tathfif I, Yaseer AA, Rashid KS, Sagor RH (2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express 29:32365. https://doi.org/10.1364/OE.439974

    Article  CAS  PubMed  Google Scholar 

  23. Liu H, Sun X, Yao F, Pei Y, Yuan H, Zhao H (2012) Controllable coupling of localized and propagating surface plasmons to tamm plasmons. Plasmonics 7:749–754. https://doi.org/10.1007/s11468-012-9369-x

    Article  CAS  Google Scholar 

  24. Rotenberg N, Beggs DM, Sipe JE, Kuipers L (2013) Resonant coupling from a new angle: coherent control through geometry. Opt Express 21:16504–16513. https://doi.org/10.1364/OE.21.016504

    Article  CAS  PubMed  Google Scholar 

  25. Zhan S, Li H, Cao G, He Z, Li B, Yang H (2014) Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J Phys D Appl Phys 47:205101. https://doi.org/10.1088/0022-3727/47/20/205101

    Article  CAS  Google Scholar 

  26. Chen F (2018) Nanosensing and slow light application based on Fano resonance in waveguide coupled equilateral triangle resonator system. Optik 171:58–64. https://doi.org/10.1016/j.ijleo.2018.03.135

    Article  CAS  Google Scholar 

  27. Han Z, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19:3251–3257. https://doi.org/10.1364/OE.19.003251

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Zhang L, Li H, Chen H (2014) Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl Phys Lett 104:231114. https://doi.org/10.1063/1.4883647

    Article  CAS  Google Scholar 

  29. Wu C, Ding H, Huang T, Wu X, Chen B, Ren K, Fu S (2017) Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13:251–257. https://doi.org/10.1007/s11468-017-0506-4

    Article  CAS  Google Scholar 

  30. Guo Y, Huo Y, Niu Q, He Q, Hao X (2020) Band-stop filter based on tunable Fano resonance and electromagnetically induced transparency in metal-dielectric-metal waveguide coupling systems. Phys Scr 96:015507. https://doi.org/10.1088/1402-4896/abca5b

    Article  CAS  Google Scholar 

  31. Hao X, Huo Y, He Q, Guo Y, Niu Q, Cui P, Wang Y, Song M (2021) Multiple plasmon-induced transparency with extra-high FOM based on a MIM waveguide composed of stubs. Phys Scr 96:075505. https://doi.org/10.1088/1402-4896/abfbff

    Article  Google Scholar 

  32. Li D, Li EP (2013) Impedance calculation and equivalent circuits for metal-insulator-metal plasmonic waveguide geometries. Opt Lett 38:3384–3386. https://doi.org/10.1364/OL.38.003384

    Article  PubMed  Google Scholar 

  33. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22:7669–7677. https://doi.org/10.1364/OE.22.007669

    Article  CAS  PubMed  Google Scholar 

  34. Hassan MF, Tathfif I, Radoan M, Sagor RH (2020) A concentric double-ring resonator based plasmonic refractive index sensor with glucose sensing capability. 2020 IEEE Rgeion 10 Conf (TENCON) 91. https://doi.org/10.1109/TENCON50793.2020.9293901

  35. Li S, Zhang Y, Song X, Wang Y, Yu L (2016) Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system. Opt Express 24:15351. https://doi.org/10.1364/OE.24.015351

    Article  PubMed  Google Scholar 

  36. Islam M, Dhriti KM, Sarkar R, Kumar G (2021) Tunable control of electromagnetically induced transparency effect in a double slot terahertz waveguide. Opt Commun 483:126632. https://doi.org/10.1016/j.optcom.2020.126632

    Article  CAS  Google Scholar 

  37. Hassan MF, Sagor RH, Tathfif I, Rashid KS, Radoan M (2020) An optimized dielectric-metal-dielectric refractive index nanosensor. IEEE Sens J 21:1461. https://doi.org/10.1109/JSEN.2020.3016570

  38. Zhang X, Xu YY, Zhu XS, Shi YW (2022) Surface plasmon resonance temperature sensor with tunable detection range based on a silver-coated multi-hole optical fiber. Opt Express 30:48091. https://doi.org/10.1364/OE.478355

    Article  CAS  PubMed  Google Scholar 

  39. Li S, Wang Y, Jiao R, Wang L, Duan G, Yu L (2017) Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt Express 25:3525–3533. https://doi.org/10.1364/OE.25.003525

    Article  PubMed  Google Scholar 

  40. Tathfif I, Hassan MF, Rashid KS, Yaseer AA, Sagor RH (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun 519:128429. https://doi.org/10.1016/j.optcom.2022.128429

    Article  CAS  Google Scholar 

  41. Rashid KS, Hassan MF, Yaseer AA, Tathfif I, Sagor RH (2021) Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens Bio-Sens Res 33:100440. https://doi.org/10.1016/j.sbsr.2021.100440

  42. Zhou J, Chen H, Zhang Z, Tang J, Cui J, Xue C, Yan S (2017) Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity. AIP Adv 7:015020. https://doi.org/10.1063/1.4974075

    Article  CAS  Google Scholar 

  43. Fu H, Li S, Wang Y, Song G, Zhang P, Wang L, Yu L (2018) Independently tunable ultrasharp double fano resonances in coupled plasmonic resonator system. IEEE Photonics J 10:1–9. https://doi.org/10.1109/JPHOT.2018.2791612

    Article  Google Scholar 

  44. Chen Y, Chen L, Wen K, Hu Y, Lin W (2019) Double fano resonances based on different mechanisms in a MIM plasmonic system. Photonics Nanostruct: Fund Appl 36:100714. https://doi.org/10.1016/j.photonics.2019.100714

    Article  Google Scholar 

  45. Zhu J, Wu C (2021) Optical refractive index sensor with Fano resonance based on original MIM waveguide structure. Results in Physics 21:103858. https://doi.org/10.1016/j.rinp.2021.103858

    Article  Google Scholar 

  46. Yu S, Wang S, Zhao T, Yu J (2020) Tunable plasmonic system based on a slotted side-coupled disk resonator and its multiple applications on chip-scale devices. Optik 212:164748. https://doi.org/10.1016/j.ijleo.2020.164748

    Article  CAS  Google Scholar 

  47. Rashid KS, Tathfif I, Yaseer AA, Hassan MF, Sagor RH (2021) Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Express 29:37541. https://doi.org/10.1364/OE.442954

    Article  CAS  PubMed  Google Scholar 

  48. **ao G, Xu Y, Yang H, Ou Z, Chen J, Li H, Liu X, Zeng L, Li J (2021) High sensitivity plasmonic sensor based on fano resonance with inverted U-shaped resonator. Sensors (Basel) 21:1164. https://doi.org/10.3390/s21041164

  49. Yeh Y-L (2008) Real-time measurement of glucose concentration and average refractive index using a laser interferometer. Opt Lasers Eng 46:666–670. https://doi.org/10.1016/j.optlaseng.2008.04.008

    Article  Google Scholar 

  50. Chou Chau YF, Chou Chao CT, Huang HJ, Kumara N, Lim CM, Chiang HP (2019) Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects. Nanomaterials (Basel) 9:1433. https://doi.org/10.3390/nano9101433

  51. Rakhshani MR, Tavousi A, Birjandi MAM (2018) Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl Opt 57:7798. https://doi.org/10.1364/AO.57.007798

    Article  CAS  PubMed  Google Scholar 

  52. Tathfif I, Rashid KS, Yaseer AA, Sagor RH (2021) Alternative material titanium nitride based refractive index sensor embedded with defects: an emerging solution in sensing arena. Results Phys 29:104795. https://doi.org/10.1016/j.rinp.2021.104795

    Article  Google Scholar 

  53. Hassan MF, Sagor RH, Tathfif I, Rashid KS, Radoan M (2020) An optimized dielectric-metal-dielectric refractive index nanosensor. IEEE Sens J 21:1461. https://doi.org/10.1109/JSEN.2020.3016570

  54. Chen J, Li J, Liu X, Rohimah S, Tian H, Qi D (2021) Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt Commun 482:126563. https://doi.org/10.1016/j.optcom.2020.126563

    Article  CAS  Google Scholar 

  55. Wang S, Zhao TG, Yu SL, Ma WY (2020) High-performance nano-sensing and slow-light applications based on tunable multiple fano resonances and EIT-like effects in coupled plasmonic resonator system. IEEE Access 8:40599. https://doi.org/10.1109/ACCESS.2020.2974491

    Article  Google Scholar 

  56. Lu H, Liu XM, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev B 85:053803. https://doi.org/10.1103/PhysRevA.85.053803

    Article  CAS  Google Scholar 

  57. Tan XP, Wei ZC, Liang RS, Yi YJ, Zhang XM, Zhong NF, Li XP (2017) Electromagnetically induced transparency and slow light effect based on symmetric stub waveguides and nanodisks. Chinese J Quantum Electron 34:123. http://lk.hfcas.ac.cn/EN/Y2017/V34/I1/123

  58. Chen F, Yao D (2014) Tunable multiple all-optical switch based on multi-nanoresonator-coupled waveguide systems containing Kerr material. Opt Commun 312:143–147. https://doi.org/10.1016/j.optcom.2013.09.011

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China, grant number 62165013.

Author information

Authors and Affiliations

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Zhang, S., Ding, J. et al. Exploring Plasma-Induced Transparency: Coupling Plasmonic Waveguides with Resonators for Innovative Nanophotonic Applications. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02116-0

Keywords

Navigation