Log in

Controllable Coupling of Localized and Propagating Surface Plasmons to Tamm Plasmons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We theoretically investigate the coupling between Tamm plasmons and localized surface plasmons (LSPs) as well as propagating surface plasmons (PSPs) in a multilayer structure consisting of a metallic nanowire array and a spatially separated metal–dielectric Bragg reflector (DBR). A clear anticrossing behavior of the resonances is observed in the dispersion diagram resulting from the coupling, which is well explained by the coupled oscillator model. The coupling also creates new hybrid LSP or PSP modes with narrow bandwidths and unique spectral features. Upon the excitation of these hybrid modes, the local fields underneath the nanowires for the hybrid LSPs or near the lower metal layer surface for the hybrid PSPs are both enhanced greatly as compared with those achieved in the structure without DBR, which has potential applications in nonlinear optics and surface-enhanced spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  Google Scholar 

  4. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574

    Article  CAS  Google Scholar 

  5. Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry. Phys Today 61:44–50

    Article  Google Scholar 

  6. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  7. Shalaev VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358

    Article  Google Scholar 

  8. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude dam** limit. Nature Mater 8:758–762

    Article  CAS  Google Scholar 

  9. Kaelberer T, Fedotov VA, Papasimakis N, Tsai DP, Zheludev NI (2010) Toroidal dipolar response in a metamaterial. Science 330:1510–1512

    Article  CAS  Google Scholar 

  10. Christ A, Zentgraf T, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2006) Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations. Phys Rev B 74:155435

    Article  Google Scholar 

  11. Lévêque G, Martin OJF (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 14:9971–9981

    Article  Google Scholar 

  12. Lévêque G, Quidant R (2008) Channeling light along a chain of near-field coupled gold nanoparticles near a metallic film. Opt Express 16:22029–22038

    Article  Google Scholar 

  13. Yi MF, Zhang DG, Wen XL, Fu Q, Wang P, Lu YH, Ming H (2011) Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film. Plasmonics 6:213–217

    Article  CAS  Google Scholar 

  14. Kaliteevski M, Iorsh I, Brand S, Abram RA, Chamberlain JM, Kavokin AV, Shelykh IA (2006) Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 76:165415

    Article  Google Scholar 

  15. Zhou HC, Yang G, Wang K, Long H, Lu PX (2010) Multiple optical Tamm states at a metal–dielectric mirror interface. Opt Lett 35:4112–4114

    Article  Google Scholar 

  16. Symonds C, Lemaître A, Homeyer E, Plenet JC, Bellessa J (2009) Emission of Tamm plasmon/exciton polaritons. Appl Phys Lett 95:151114

    Article  Google Scholar 

  17. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  18. Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled wave analysis of binary gratings. J Opt Soc Am A 12:1068–1076

    Article  Google Scholar 

  19. Moharam MG, Pommet DA, Grann EB (1995) Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 12:1077–1086

    Article  Google Scholar 

  20. Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2003) Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91:183901

    Article  CAS  Google Scholar 

  21. Zentgraf T, Zhang S, Oulton RF, Zhang X (2009) Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems. Phys Rev B 80:195415

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant 60808027, 61107044, and 11176009) and the Ministry of Science and Technology (MOST) of China (973 project 2007CB307001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **udong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Sun, X., Yao, F. et al. Controllable Coupling of Localized and Propagating Surface Plasmons to Tamm Plasmons. Plasmonics 7, 749–754 (2012). https://doi.org/10.1007/s11468-012-9369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9369-x

Keywords

Navigation