Log in

Review on plasmon induced transparency based on metal-dielectric-metal waveguides

基于 MDM 波导的等离子体诱导透明研究综述

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Plasmon induced transparency (PIT) in the transparent window provides new insights into the design of optical filters, switches and storage, and integrated optics. The slow light effect makes PPIT applicable to both sensors and slow light devices. Besides, PPIT can overcome the diffraction limit of light, which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices. In this paper, we first summarize the researches of Pit phenomenon based on metal-dielectric-metal (MDM) waveguide systems and analyze the physical mechanisms of Pit including bright-dark mode interactions and phase-coupling-induced transparency. Then, we review the applications of Pit in optical sensing, optical filtering, optical switching, slow light devices and optical logic devices. At last, we outline important challenges that need to be addressed, provide corresponding solutions and predict important directions for future research in this area.

摘要

等离子体诱导透明(PIT)为设计新的光学滤波器、光开关、光存储以及集成光学器件带来了新的 思路。慢光效果使PIT适用于传感器和慢光设备。此外, PIT可以克服光的衍射极限, 为在半波长范 围内操纵光提供了可能, 有利于光学器件的小型化。本文总结了基于金属-电介质-金属(MDM)波导系 统的PIT现象的研究, 并分析了 PIT的物理机理, 包括明暗模式相互作用和相耦合诱导透明。其次, 回顾了 PIT在光学传感、光学滤波、光学开关、慢光器件和光学逻辑器件中的应用。最后, 概述了目 前需要解决的重要挑战, 提供了相应的解决方案, 并预测了该领域未来研究的重要方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Yun, Hayasaka K, Kasai K. Conditional transfer of quantum correlation in the intensity of twin beams [J]. Physical Review A, 2005, 71(6): 362–368. DOI: 10.1103/PhysRevA.71.062341.

    Google Scholar 

  2. Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media [J]. Reviews of Modern Physics, 2005, 77(2): 633–673. DOI: 10.1103/revmodphys.77.633.

    Article  Google Scholar 

  3. Yang Zhong-jian, Antosiewicz T J, Shegai T. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions [J]. Optics Express, 2016, 24(18): 20373–20381. DOI: 10.1364/OE.24.020373.

    Article  Google Scholar 

  4. Zhao Qian, Yang Zhong-jian, He Jun. Fano resonances in heterogeneous dimers of silicon and gold nanospheres [J]. Frontiers of Physics, 2018, 13(3): 137801. DOI: 10.1007/s11467-018-0746-6.

    Article  Google Scholar 

  5. Ding Si-**g, Zhang Han, Yang Da-jie, Qiu Yun-hang, Nan Fan, Yang Zhong-jian, Wang Jian-fang, Wang Qu-quan, Lin Hai-qing. Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups [J]. Nano Letters, 2019, 19(3): 2005–2011. DOI: 10.1021/acs. nanolett.9b00020.

    Article  Google Scholar 

  6. Deng Yan-hui, Yang Zhong-jian, He Jun. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement [J]. Optics Express, 2018, 26(24): 31116–31128. DOI: 10.1364/?E.26.031116.

    Article  Google Scholar 

  7. Johnson H, Ajaypraveenkumar A, Sivakumar G, Mohanraj K. A new approach for deposition of silver film from AgCl through successive ionic layer adsorption and reaction technique [J]. Journal of Central South University, 2018, 24(12): 2793–2798. DOI: 10.1007/s11771- 017-3693-4.

    Google Scholar 

  8. Hau L V, Harris S E, Dutton Z, Behroozi C H. Light speed reduction to 17 metres per second in an ultracold atomic gas [J]. Nature, 1999, 397(6720): 594–598. DOI: 10.1038/17561.

    Article  Google Scholar 

  9. Sushmita B, Duan **-song, Nepal D, Park K, Pachter R, Vaia R A. Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers [J]. Nano Letters, 2013, 13(12): 6287–6291. DOI: 10.1021/nl403911z.

    Article  Google Scholar 

  10. Hentschel M, Michael S, Ralf V, Harald G, Alivisatos A P, Liu Na. Transition from isolated to collective modes in plasmonic oligomers [J]. Nano Letters, 2010, 10(7): 2721–2726. DOI: 10.1021/nl101938p.

    Article  Google Scholar 

  11. Huang Hai-long, Xia Hui, Guo Zhi-bo, Li Hong-jian, Xie Ding. Polarization-insensitive and tunable plasmon induced transparency in a graphene-based terahertz metamaterial [J]. Optics Communications, 2018, 424: 163–169. DOI: 10.1016/j.optcom.2018.04.060.

    Article  Google Scholar 

  12. Xu Hui, Xiong Cui-xiu, Chen Zhi-quan, Zheng Ming-fei, Zhao Ming-zhuo, Zhang Bai-hui, Li Hong-jian. Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial [J]. Journal of the Optical Society of America B-Optical Physics, 2018, 35(6): 1463–1468. DOI: 10.1364/ JOSAB.35.001463.

    Article  Google Scholar 

  13. Xie Su-xia, Li Zhi-jian, Li Hong-jian, Zhou Ren-long, Zhou Bing-ju. Transparency windows of the plasmonic structure composed of a metal semi-ring grating and a dielectric semi-circle groove grating [J]. Optik, 2014, 125(1): 461–463. DOI: 10.1016/j.ijleo.2013.07.050.

    Article  Google Scholar 

  14. Tang Bin, Dai Lei, Jiang Chun. Electromagnetically induced transparency in hybrid plasmonic-dielectric system [J]. Optics Express, 2011, 19(2): 628–637. DOI: 10.1364/ OE.19.000628.

    Article  Google Scholar 

  15. Yang Hui, Li Guan-hai, Wang Lin, Li Hong-jian, Chen **ao-shuang. The respective effects of direct and indirect couplings on the plasmon-induced transparency in waveguide systems [J]. Optics Communications, 2016, 364: 83–87. DOI: 10.1016/j.optcom.2015.11.037.

    Article  Google Scholar 

  16. Kekatpure R D, Barnard E S, Cai Wen-shan, Brongersma M L. Phase-coupled plasmon-induced transparency [J]. Physical Review Letters, 2010, 104(24): 243902. DOI: 10.1103/PhysRevLett.104.243902.

    Article  Google Scholar 

  17. Chen Zhi-quan, Li Hong-jian, He Zhi-hui, Xu Hui, Zheng Ming-fei, Zhao Ming-zhuo. Multiple plasmon- induced transparency effects in a multimode-cavity-coupled metal-dielectric-metal waveguide [J]. Applied Physics Express, 2017, 10(9): 092201. DOI: 10.7567/APEX.10. 092201.

    Article  Google Scholar 

  18. Li Bo-xun, Li Hong-jian, Zeng Li-li, Zhan Shi-**, He Zhi-hui, Chen Zhi-quan, Xu Hui. Theoretical analysis and applications in inverse T-shape structure [J]. Journal of the Optical Society of America-A Optics Image Science &Vision, 2016, 33(5): 811–816. DOI: 364/JOSAA.33.000811.

    Article  Google Scholar 

  19. Lu Hua, Liu Xue-ming, Wang Guo-xi, Mao Dong. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency [J]. Nanotechnology, 2012, 23(44): 444003. DOI: 1088/0957-4484/23/44/444003.

    Article  Google Scholar 

  20. He Zhi-hui, Li Hong-jian, Zhan Shi-**, Cao Guang-tao, Li Bo-xun. Combined theoretical analysis for plasmon- induced transparency in waveguide systems [J]. Optics Letters, 2014, 39(19): 5543–5546. DOI: 10.1364/OL.39. 005543.

    Article  Google Scholar 

  21. Li Bo-xun, Li Hong-jian, Zeng Li-li, Zhan Shi-**, He Zhi-hui, Chen Zhi-quan, Xu Hui. Filtering and sensing properties based on metal-dielectric-metal waveguide with slot cavities [J]. Journal of Modern Optics, 2016, 63(14): 1378–1383. DOI: 10.1080/09500340.2016.1150530.

    Article  Google Scholar 

  22. Han Zhang-hua, Bozhevolnyi S I. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices [J]. Optics Express, 2011, 19(4): 3251–3257. DOI: 10.1364/OE.19. 003251.

    Article  Google Scholar 

  23. Yang **ao-yu, Hu **ao-yong, Chai Zhen, Lu Cui-cui, Yang Hong, Gong Qi-huang. Tunable ultracompact chip-integrated multichannel filter based on plasmon- induced transparencies [J]. Applied Physics Letters, 2014, 104(22): 221114. DOI: 10.1063/1.4882916.

    Article  Google Scholar 

  24. Zhu Yu, Hu **ao-yong, Yang Hong, Gong Qi-huang. On-chip pasmon-induced transparency based on plasmonic coupled nanocavities [J]. Scientific Reports, 2014, 4: 3752. DOI: 10.1038/srep03752.

    Article  Google Scholar 

  25. Chai Zhen, Hu **ao-yong, Zhu Yu, Sun Si-bai, Yang Hong, Gong Qi-huang. Ultracompact Chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity [J]. Advanced Optical Materials, 2014, 2(4): 320–325. DOI: 10.1002/adom. 201300497.

    Article  Google Scholar 

  26. Huang Qing-zhong, Shu Zhan, Song Ge, Chen Ju-guang, Xia **-song, Yu **-zhong. Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator [J]. Optics Express, 2014, 22(3): 3219–3227. DOI: 10.1364/OE.22.003219.

    Article  Google Scholar 

  27. Zhan Shi-**, Kong De-ming, Cao Guang-tao, He Zhi-hui, Wang Yun, Xu Guo-jun, Li Hong-jian. Analogy of plasmon induced transparency in detuned U-resonators coupling to MPDM plasmonic waveguide [J]. Solid State Communications, 2013, 174: 50–54. DOI: 10.1016/j.ssc.2013.09.013.

    Article  Google Scholar 

  28. Li Bo-xun, Li Hong-jian, Zeng Li-li, Zhan Shi-**, Cao Guang-tao, He Zhi-hui, Yang Hui. Tunable filter and optical buffer based on dual plasmonic ring resonators [J]. Journal of Modern Optics, 2015, 62(3): 186–194. DOI: 10.1080/09500340.2014.967322.

    Article  Google Scholar 

  29. Cao Guang-tao, Li Hong-jian, Zhan Shi-**, He Zhi-hui, Guo Zhi-bo, Xu **u-ke, Yang Hui. Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide [J]. Optics Letters, 2014, 39: 216–219. DOI: 10.1364/OL.39.000216.

    Article  Google Scholar 

  30. Cao Guang-tao, Li Hong-jian, Zhan Shi-**, Xu Hai-qing, Liu Zhi-min, He Zhi-hui, Wang Yun. Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators [J]. Optics Express, 2013, 21: 9198–9205. DOI: 10.1364/OE.21.009198.

    Article  Google Scholar 

  31. He Zhi-hui, Li Hong-jian, Zhan Shi-**, Cao Guang-tao, Li Bo-xun. Investigating the direct coupling between plasmonic cavities in the case of the second-order resonant mode [J]. Modern Physics Letters B, 2014, 28(27): 1450217. DOI: 10.1142/S0217984914502170.

    Article  Google Scholar 

  32. Zhan Shi-**, Li Hong-jian, He Zhi-hui, Li Bo-xun, Chen Zhi-quan, Xu Hui. Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide [J]. Optics Express, 2015, 23: 20313–20320. DOI: 10.1364/OE.23.020313.

    Article  Google Scholar 

  33. Xu Hui, Li Hong-jian, Li Bo-xun, He Zhi-hui, Chen Zhi-quan, Zheng Ming-fei. Influential and theoretical analysis of nano-defect in the stub resonator [J]. Scientific Reports, 2016, 6: 30877. DOI: 10.1038/srep30877.

    Article  Google Scholar 

  34. Chen Zhi-quan, Li Hong-jian, Li Bo-xun, He Zhi-hui, Xu Hui, Zheng Ming-fei, Zhao Ming-zhuo. Tunable ultra-wide band-stop filter based on single-stub plasmonic- waveguide system [J]. Applied Physics Express, 2016, 9(10): 102002. DOI: 10.7567/APEX.9.102002.

    Article  Google Scholar 

  35. Zhan Shi-**, Li Hong-jian, Cao Guang-tao, He Zhi-hui, Li Bo-xun, Xu Hui. Theoretical analysis of plasmon-induced transparency in ring-resonators coupled channel drop filter systems [J]. Plasmonics, 2014, 9(6): 1431–1437. DOI: 10.1007/s11468-014-9760-x.

    Article  Google Scholar 

  36. Zhan Shi-**, Li Hong-jian, Cao Guang-tao, He Zhi-hui, Li Bo-xun, Yang Hui. Slow light based on plasmon- induced transparency in dual-ring resonator-coupled MDM waveguide system [J]. Journal of Physics D: Applied Physics, 2014, 47(20): 205101. DOI: 10.1088/0022-3727/47/20/205101.

    Article  Google Scholar 

  37. Chen Jian-jun, Li Zhi, Yue Song, Xiao **g-hua, Gong Qi-huang. Plasmon-induced transparency in asymmetric t-shape single slit [J]. Nano letters, 2012, 12(5): 2494–2498. DOI: 10.1021/nl300659v.

    Article  Google Scholar 

  38. He Zhi-hui, Li Hong-jian, Zhan Shi-**, Li Bo-xun, Chen Zhi-quan, Xu Hui. Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator [J]. Scientific Reports, 2015, 5: 15837. DOI: 10.1038/srep15837.

    Article  Google Scholar 

  39. Li Bo-xun, Li Hong-jian, Zeng Li-li, Zhan Shi-**, He Zhi-hui, Chen Zhi-quan, Xu Hui. Sensing application in fano resonance with t-shape structure [J]. Journal of Lightwave Technology, 2016, 34(14): 3342–3347. DOI: 10.1109/JLT.2016.2572723.

    Article  Google Scholar 

  40. Zhang Zheng-ren, Zhang Li-wei, Li Hong-qiang, Chen Hong. Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity [J]. Applied Physics Letters, 2014, 104(23): 231114. DOI: 10.1063/1.4883647.

    Article  Google Scholar 

  41. Yu Da-ming, Xiang Zhai, Wang Ling, Lin Qi, Li Hong-ju, Xia Sheng-xuan, Shang **ong-jun. Plasmon- induced transparency in a surface plasmon polariton waveguide with a right-angled slot and rectangle cavity [J]. Plasmonics, 2016, 11(4): 1151–1155. DOI: 10.1007/s11468- 015-0153-6.

    Article  Google Scholar 

  42. Zeng Chao, Cui Yu-dong, Liu Xue-ming. Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials [J]. Optics Express, 2015, 23(1): 545–551. DOI: 10.1364/OE.23.000545.

    Article  Google Scholar 

  43. Dong Zheng-gao, Liu Hui, Xu Ming-xiang, Li Tao, Wang Shu-ming, Cao **g-xiao, Zhu Shi-ning, Zhang Xue-ji. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically- induced transparency [J]. Optics Express, 2010, 18(21): 22412–22417. DOI: 10.1364/OE.18.022412.

    Article  Google Scholar 

  44. Chen Chia-yun, Un Ieng-wai, Tai Nyan-hwa, Yen Ta-jen. A symmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance [J]. Optics Express, 2009, 17(17): 15372–15380. DOI: 10.1364/OE.17.015372.

    Article  Google Scholar 

  45. Han Zhang-hua, Bozhevolnyi S I. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices [J]. Optics Express, 2011, 19(4): 3251–3257. DOI: 10.1364/OE.19. 003251.

    Article  Google Scholar 

  46. Liu **ao-jun, Gu Jian-qiang, Singh R, Ma Ying-fang, Zhu Jun, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode [J]. Applied Physics Letters, 2012, 100(13): 131101. DOI: 10.1063/1.3696306.

    Article  Google Scholar 

  47. Liu Na, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing [J]. Nano Letters, 2009, 10(4): 1103–1107. DOI: 10.1021/n1902621d.

    Article  Google Scholar 

  48. Liu Qing, Kee J S, Park M K. A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide [J]. Optics Express, 2013, 21(5): 5897–5909. DOI: 10.1364/OE.21.005897.

    Article  Google Scholar 

  49. Chen Ying, Luo Pei, Liu **ao-fei, Di Yuan-jian, Lei He. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator [J]. Optics &Laser Technology, 2018, 101: 273–278. DOI: 10.1016/j.optlastec.2017.11.022.

    Article  Google Scholar 

  50. Yang Hui, Li Guan-hai, Lin Wang, Li Hong-jian, Chen **ao-shuang. The respective effects of direct and indirect couplings on the plasmon-induced transparency in waveguide systems [J]. Optics Communications, 2016, 364: 83–87. DOI: 10.1016/j.optcom.2015.11.037.

    Article  Google Scholar 

  51. Wang Jun-qiao, Fan Chun-zhen, Ding Pei, He **-na, Cheng Yong-guang, Hu Wei-qin, Cai Gen-wang, Liang Er-jun, Xue Qian-zhong. Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency [J]. Optics Express, 2012, 20(14): 14871–14878. DOI: 10.1364/OE.20.014871.

    Article  Google Scholar 

  52. Huang Yin, Min Chang-jun, Pouya D, Georgios V. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors [J]. Optics Express, 2015, 23(11): 14922–14936. DOI: 10.1364/OE.23.014922.

    Article  Google Scholar 

  53. Cao Guang-tao, Li Hong-jian, Deng Yan, Zhan Shi-**, He Zhi-hui, Li Bo-xun. Plasmon-induced transparency in a single multimode stub resonator [J]. Optics Express, 2014, 22(21): 25215–25223. DOI: 10.1364/OE.22.025215.

    Article  Google Scholar 

  54. He Zhi-hui, Peng Yong-yi, Li Bo-xun, Chen Zhi-quan, Xu Hui, Zheng Ming-fei, Li Hong-jian. Aspect ratio control and sensing applications for a slot waveguide with a multimode stub [J]. Applied Physics Express, 2016, 9(7): 072002. DOI: 10.7567/APEX.9.072002.

    Article  Google Scholar 

  55. Dong Li-rong, Xu Xue-mei, Li Chen-**g, Guo Yuan, Sun Ke-hui, Ding Yi-peng. Plasmon-induced transparency in sensing application with semicircle cavity waveguide [J]. Optics Communications, 2018, 410: 751–755. DOI:10.1016/j.optcom.2017.11.048.

    Article  Google Scholar 

  56. Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures [J]. Reviews of Modern Physics, 2010, 82(3): 2257–2298. DOI: 10.1103/RevModPhys.82.2257.

    Article  Google Scholar 

  57. Lu Hua, Liu Xue-ming, Mao Dong, Wang Guo-xi. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators [J]. Optics Letters, 2012, 37(18): 3780–3782. DOI: 10.1364/?L.37.003780.

    Article  Google Scholar 

  58. Chen Zhi-quan, Li Hong-jian, Zhan Shi-**, He Zhi-hui, Li Bo-xun, Xu Hui. Sensing characteristics based on Fano resonance in rectangular ring waveguide [J]. Optics Communications, 2015, 356: 373–377. DOI: 10.1016/ j.optcom.2015.08.020.

    Article  Google Scholar 

  59. Zhan Shi-**, Peng Yong-yi, He Zhi-hui, Li Bo-xun, Chen Zhi-quan, Xu Hui, Li Hong-jian. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide [J]. Scientific Reports, 2016, 6(1): 22428. DOI: 10.1038/srep22428.

    Article  Google Scholar 

  60. Wei Guo-qiang, Tian **-**, Yang Rong-cao. Fanoresonance in MDM plasmonic waveguides coupled with split ring resonator [J]. Optik, 2019, 193: 162990. DOI: https://doi.org/10.1016/j.ijleo.2019.162990.

    Article  Google Scholar 

  61. He Zhi-hui, Zhao Ming-zhuo, Chen Zhi-quan, Xu Hui, Li Hong-jian. Kee** good sensing performance of metal-dielectric-metal waveguides after coating treatment [J]. IEEE Photonics Journal, 2017, 9(3): 1–7. DOI: 10.1109/JPHOT.2017.2693964.

    Google Scholar 

  62. Zheng Ming-fei, Li Hong-jian, Chen Zhi-quan, He Zhi-hui, Xu Hui, Zhao Ming-zhuo. Compact and multiple plasmonic nanofilter based on ultra-broad stopband in partitioned semicircle or semiring stub waveguide [J]. Optics Communications, 2017, 402: 47–51. DOI: 10.1016/j.optcom.2017.05.062.

    Article  Google Scholar 

  63. Zheng Ming-fei, Li Hong-jian, Chen Zhi-quan, Xu Hui, Zhao Ming-zhuo, Xiong Cui-xiu. Transmission performance based on plasmonic waveguide coupled with sectorial-ring stub resonator [J]. IEEE Photonics Technology Letters, 2018, 30(5): 410–418. DOI: 10.1109/LPT.2018. 2789586.

    Article  Google Scholar 

  64. Iman Z, Abrishamian M, Berini P. Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs) [J]. Optics Express, 2013, 21(1): 79–86. DOI: 10.1364/OE.21.000079.

    Article  Google Scholar 

  65. Luo **n, Zou **-hua, Li **ao-feng, Zhou Zhi, Pan Wei, Yan Lian-shan, Wen K. High-uniformity multichannel plasmonic filter using linearly lengthened insulators in metal-insulator-metal waveguide [J]. Optics Letters, 2013, 38(9): 1585–1587. DOI: 10.1364/OL.38.001585.

    Article  Google Scholar 

  66. Mohsen R, Miri M, Khavasi A, Mehrany K, Rashidian B. An efficient circuit model for the analysis and design of rectangular plasmonic resonators [J]. Plasmonics, 2012, 7(2): 245–252. DOI: 10.1007/s11468- 011-9300-x.

    Article  Google Scholar 

  67. Yun Bin-feng, Hu Guo-hua, Cui Yi-**. Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity [J]. Plasmonics, 2013, 8(6): 267–275. DOI: 10.1007/s11468-012-9384-y.

    Article  Google Scholar 

  68. Jin Tao, Huang Xu-guang, Zhu Jia-hu. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators [J]. Optics Express, 2010, 18(11): 11111–11116. DOI: 10.1364/OE.18.011111.

    Article  Google Scholar 

  69. Jin Tao, Huang Xu-guang, Lin **an-shi, Zhang Qin, Jin **ao-pin. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure [J]. Optics Express, 2009, 17(16): 13989–13994. DOI: 10.1364/OE.17.013989.

    Article  Google Scholar 

  70. Li Bo-xun, Li Hong-jian, Zeng Li-li, Zhan Shi-**, He Zhi-hui, Chen Zhi-quan, Xu Hui. Filtering and sensing properties based on metal-dielectric-metal waveguide with slot cavities [J]. Journal of Modern Optics, 2016, 63(14): 1–6. DOI: 10.1080/09500340.2016.1150530.

    Article  MathSciNet  Google Scholar 

  71. Zand I, Abrishamian M S, Pakizeh T. Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4600505. DOI:10.1109/JSTQE.2012.2224645.

    Article  Google Scholar 

  72. Zhan Shi-**, Li Hong-jian, Cao Guang-tao, He Zhi-hui, Li Bo-xun, Xu Hui. Theoretical analysis and applications on nano-block loaded rectangular ring [J]. Journal of the Optical Society of America A, 2014, 31(10): 2263–2267. DOI: 10.1364/JOSAA.31.002263.

    Article  Google Scholar 

  73. Zhou **, Zhou Lin-jie. Analysis of subwavelength bandpass plasmonic filters based on single and coupled slot nanocavities [J]. Applied Optics, 2013, 52(3): 480–488. DOI: I0.1364/A0.52.000480.

    Article  Google Scholar 

  74. Chang YJ, Kim S. Dielectric slot embedded metal cavity waveguides [J]. Optics Communications, 2014, 324: 134–140. DOI: 10.1016/j.optcom.2014.03.026.

    Article  Google Scholar 

  75. Cao Guang-tao, Li Hong-jian, Deng Yan, Zhan Shi-**, He Zhi-hui, Li Bo-xun. Systematic theoretical analysis of selective-mode plasmonic filter based on aperture-side- coupled slot cavity [J]. Plasmonics, 2014, 9(5): 1163–1169. DOI: 10.1007/s11468-014-9727-y.

    Article  Google Scholar 

  76. Liu Huai-qing, Ren Guo-bin, Gao Yi-xiao, Zhu Bo-feng, Li Hai-su, Wu Bei-lei, Jian Shui-sheng. Ultrafast and low-power all-optical switch based on asymmetry electromagnetically induced transparency in MIM waveguide containing Kerr material [J]. Optics Communications, 2015, 353: 189–194. DOI: 10.1016/ j.optcom.2015.05.018.

    Article  Google Scholar 

  77. Yadollah S, Vahedi M. Pump-tuned plasmon-induced transparency for sensing and switching applications [J]. Optics Communications, 2017, 401: 40–45. DOI: 10.1016/ j.optcom.2017.05.016.

    Article  Google Scholar 

  78. Zhang Zhao-jian, Yang Jun-bo, He **n, Han Yun-xin, Zhang **g-**g, Huang Jie, Chen Ding-bo, Xu Si-yu. All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency [J]. Optics Communications, 2018, 425: 196–203. DOI: 10.1016/j.optcom.2018.04.061.

    Article  Google Scholar 

  79. Zhang Bai-hui, Li Hong-jian, Xu Hui, Zhao Ming-zhuo, Xiong Cui-xiu, Liu Chao, Wu Kuan. Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial [J]. Optics Express, 2019, 27(3): 3598–3608. DOI: 10.1364/OE.27. 003598.

    Article  Google Scholar 

  80. Zhao Ming-zhuo, Xu Hui, Xiong Cui-xiu, Zheng Ming-fei, Zhang Bai-hui, Xie Wen-ke, Li Hong-jian. Investigation of tunable plasmon-induced transparency and slow-light effect based on graphene bands [J]. Applied Physics Express, 2018, 11(8): 082002. DOI: 10.7567/APEX. 11.082002.

    Article  Google Scholar 

  81. Zheng Peng-fei, Yang Hui-min, Jiao Lin-sen, Fan Mei-yong, Yun Bin-feng, Cui Yi-**. Plasmonic induced transparency in a coupled system composed of metal- insulate-metal stub and trapezoid cavity resonator [J]. Optics Communications, 2017, 396: 199–205. DOI:10.1016/j.optcom.2017.03.067.

    Article  Google Scholar 

  82. Xu Han, Wang Tao, Li **ao-ming, Liu Bo, He Yu, Tang Jian. Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system [J]. Journal of Physics D: Applied Physics, 2015, 48(23): 235102. DOI: 10.1088/0022-3727/48/23/235102.

    Article  Google Scholar 

  83. Wang Guo-xi, Zhang Wen-fu, Gong Yong-kang, Liang Jian. Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide [J]. IEEE Photonics Technology Letters, 2015, 27(1): 89–92. DOI: 10.1109/LPT.2014.2362293.

    Article  Google Scholar 

  84. Zhang Zhao-jian, Yang Jun-bo, He **n, Han Yun-xin, Zhang **g-**g, Huang Jie, Chen Ding-bo, Xu Si-yu. Active enhancement of slow light based on plasmon-induced transparency with gain materials [J]. Materials, 2018, 11(6): 941. DOI: 10.3390/ma11060941.

    Article  Google Scholar 

  85. Hassani KM, Mir A, Kaatuzian H. Investigating the characteristics of a double circular ring resonators slow light device based on the plasmonics-induced transparency coupled with metal-dielectric-metal waveguide system [J]. Plasmonics, 2018, 13(5): 1523–1534. DOI: 10.1007/s11468- 017-0660-8.

    Article  Google Scholar 

  86. Yang Jian-hua, Yang Song, Song **ao-kang, Wu Fang, Yu Li. Active control of slow light in a gain-assisted plasmon-induced transparency structure[J]. IEEE Photonics Journal, 2017, 9(4): 1–9. DOI: 10.1109/JPHOT.2017.272068.

    Google Scholar 

  87. Sadeghi T, Golmohammadi S, Farmani A, Baghban H. Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory [J]. Applied Physics B, 2019, 125(10): 189. DOI: 10.1007/s00340-019-7305-x.

    Article  Google Scholar 

  88. Moradi M, Danaie M, Orouji A A. Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators [J]. Optical and Quantum Electronics, 2019, 51: 154. DOI: 10.1007/s11082- 019-1874-0.

    Article  Google Scholar 

  89. Liu Zi-hua, Ding Li-zheng, Yi Jia-pu, Wei Zhong-chao, Guo Jian-**. Design of a multi-bits input optical logic device with high intensity contrast based on plasmonic waveguides structure [J]. Optics Communications, 2019, 430: 112–118. DOI: 10.1016/j.optcom.2018.08.012.

    Article  Google Scholar 

  90. Chai Jun-xiong, Xie Yi-yuan, Ye Yi-chen, Fu Li-xia, Li Li-li, Su Ye, Xiao Ying, Liu Yong. A novel manipulation for implementing logic operations based on plasmonic resonators [J]. IEEE Photonics Journal, 2019, 11(1): 1–10. DOI: 10.1109/JPHOT.2019.2892994.

    Article  Google Scholar 

  91. Song **ao-kang, Li Shi-lei, Chen Yuan-yuan, Li Chao, Duan Gao-yan, Jiao Rong-zhen, Yu Li. Tunable tilt of the field induced by anisotropic material in a plasmonic waveguide and its application to logic gates [J]. Optics Communications, 2019, 452: 334–341. DOI: 10.1016/ j.optcom.2019.07.054.

    Article  Google Scholar 

  92. Wang Lin, Li Wei, Jiang Xun-ya. Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide [J]. Optics Letters, 2015, 40(10): 2325–2328. DOI: 10.1364/OL.40.002325.

    Article  Google Scholar 

  93. Xu Han, Wang Tao, Li **ao-ming, Xiao Shu-yuan, Zhu You-jiang. Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate [J]. Optics Express, 2015, 23(25): 31945–3155. DOI: 10.1364/?E.23.031945.

    Article  Google Scholar 

  94. Xiao Shu-yuan, Wang Tao, Jiang **ao-yun, Yan **-cheng, Cheng Le, Wang Bo-yun, Xu Chen. Strong interaction between graphene layer and Fano resonance in terahertz metamaterials [J]. Journal of Physics D: Applied physics, 2017, 50(19): 195101. DOI: 10.1088/1361-6463/ aa69b1.

    Article  Google Scholar 

  95. Liu Ting-ting, Wang Huai-xing, Liu Yong, Xiao Long-sheng, Zhou Chao-biao, Liu Yue-bo, Xu Chen, Xiao Shu-yuan. Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal-graphene metamaterial [J]. Journal of Physics D: Applied Physics, 2018, 51(41): 415105. DOI: 10.1088/1361- 6463/aadb7f.

    Article  Google Scholar 

  96. Xiao Shu-yuan, Wang Tao, Liu Ting-ting, Yan **-cheng, Li Zhong, Xu Chen. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials [J]. Carbon, 2018, 126: 271–278. DOI: 10.1016/j.carbon.2017.10.035.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-li Tian  (丽丽).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Hg., Tian, Ll., **ong, Rj. et al. Review on plasmon induced transparency based on metal-dielectric-metal waveguides. J. Cent. South Univ. 27, 698–710 (2020). https://doi.org/10.1007/s11771-020-4324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4324-z

Keywords

关键词

Navigation