Log in

Bisphenol-A incite dose-dependent dissimilitude in the growth pattern, physiology, oxidative status, and metabolite profile of Azolla filiculoides

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bisphenol-A (BPA) is a ubiquitous environmental pollutant affecting the growth and development of aquatic macrophytes. The present study was designed to evaluate the toxic effect of BPA on Azolla filiculoides. The plants were exposed to different concentrations of BPA and the effect was evaluated in terms of plant growth, physiological and oxidative status, responses of the antioxidative system, and changes in key metabolites. The results have shown that BPA (≥ 20 mg L−1) incites a significant reduction in frond number, frond surface area, and growth rate of the plants along with severe frond damage, membrane peroxidation, and electrolyte leakage. Moreover, at higher concentrations, a significant reduction in the content of chlorophylls and carotenoids was observed, which was further amplified with the duration of treatments. Furthermore, excessive generation of O2•− and H2O2 invoked the antioxidative machinery under BPA exposure. However, sufficient activity of the antioxidative enzymes was observed in plants treated with ≤ 10 mg L−1 of BPA. The untargeted metabolome profile revealed modulation of 29 metabolites including amino acids, sugar alcohols, organic acids, and phenolics in response to BPA. An increased amount of asparagine, lysine, serine, tryptophan, tyrosine, and valine after 3 days of BPA exposure indicates their role in providing better stress tolerance. Therefore, the experimental findings suggest that A. filiculoides responds differently to BPA exposure. Higher BPA concentrations (≥ 20 mg L−1) documented a greater impact in terms of plant physiology and metabolism whereas, the effect was minimal at lower concentrations (≤ 10 mg L−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as all newly created data is already contained within this article.

References

  • Adamakis ID, Malea P, Sperdouli I, Panteris E, Kokkinidi D, Moustakas M (2021) Evaluation of the spatiotemporal effects of bisphenol A on the leaves of the seagrass Cymodocea nodosa. J Hazard Mater 404:124001

    Article  CAS  Google Scholar 

  • Adhikari A, Adhikari S, Ghosh S, Azahar I, Shaw AK, Roy D, Roy S, Saha S, Hossain Z (2020) Imbalance of redox homeostasis and antioxidant defense status in maize under chromium (VI) stress. Environ Exp Bot 169:103873

    Article  CAS  Google Scholar 

  • Ahammed GJ, Wang Y, Mao Q, Wu M, Yan Y, Ren J, Wang X, Liu A, Chen S (2020) Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environ Pollut 259:113957

    Article  CAS  Google Scholar 

  • Ali I, Liu B, Farooq MA, Islam F, Azizullah A, Yu C, Su W, Gan Y (2016) Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Ecotoxicol Environ Saf 124:277–284

    Article  CAS  Google Scholar 

  • Ansari AA, Naeem M, Gill SS, AlZuaibr FM (2020) Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. Egypt J Aquat Res 46:371–376

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arora A, Saxena S (2005) Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents. Biomass Bioenerg 29(1):60–64

    Article  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Barkla BJ, Pantoja O (2011) Plasma membrane and abiotic stress. The plant plasma membrane. Springer, Berlin, Heidelberg, pp 457–470

    Chapter  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bourgeade P, Aleya E, Alaoui-Sosse L, Herlem G, Alaoui-Sosse B, Bourioug M (2021) Growth, pigment changes, and photosystem II activity in the aquatic macrophyte Lemna minor exposed to Bisphenol A. Environ Sci Pollut Res 17:1–8

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cary PR and Weerts PG (1992) Growth and nutrient composition of Azolla pinnata R. Brown and Azolla filiculoides Lamarck as affected by water temperature, nitrogen and phosphorus supply, light intensity and pH. Aquatic Bot 43(2):163–180

  • Chakraborty U, Chakraborty BN, Kapoor M (1993) Changes in the levels of peroxidase and phenylalanine ammonia-lyase in Brassica napus cultivars showing variable resistance to Leptosphaeria maculans. Folia Microbiol 38:491–496

    Article  CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signalling in plants under abiotic stress. Plant Signal Behav 8:e23681

    Article  Google Scholar 

  • Chris A, Luxmisha G, Jamson M, Abraham G (2011) Growth, photosynthetic pigments and antioxidant responses of Azolla filiculoides to monocrotophos toxicity. J Chem Pharm Res 3(3):381–383

    CAS  Google Scholar 

  • Coelho DG, de Andrade HM, Marinato CS, Araujo SC, de Matos LP, da Silva VM, de Oliveira JA (2020) Exogenous jasmonic acid enhances oxidative protection of Lemna valdiviana subjected to arsenic. Acta Physiol Plant 42:1–9

    Article  Google Scholar 

  • Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, Brooks BW (2015) Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13:1559325815598308

    Article  Google Scholar 

  • Costarelli A, Cannavò S, Cerri M, Pellegrino RM, Reale L, Paolocci F, Pasqualini S (2021) Light and temperature shape the phenylpropanoid profile of Azolla filiculoides fronds. Front Plant Sci 21:2251

    Google Scholar 

  • Das A, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 6:21

    Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • De AK, Dey N, Adak MK (2016) Bio indices for 2, 4-D sensitivity between two plant species: Azolla pinnata R. Br. and Vernonia cinerea L. with their cellular responses. Physiol Mol Biol Plants 22:371–380

    Article  CAS  Google Scholar 

  • De Vos RC, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2:778–791

    Article  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa PA, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Doğan M, Yigit SS, Dogancay G, Koçum D, Sevindik M (2020) Effects of single and binary applications of Bisphenol A and NaCl on Ceratopyllum demersum. Turk J Agric Food Sci Technol 8:2164–2169

    Google Scholar 

  • Dogan M, Yumrutas O, Saygideger S, Korkunc M, Gulnaz O, Sokmen A (2010) Effects of Bisphenol A and tetrabromobisphenol A on chickpea roots in germination stage. American-Eurasian J Agric Environ Sci 9:186–192

    CAS  Google Scholar 

  • Eimoori R, Zolala J, Pourmohiabadi H, Noroozian E, Mansouri H (2020) Contribution of Azolla filiculoides to hydrazine elimination from water. Wetl Ecol Manag 28(3):439–447

    Article  CAS  Google Scholar 

  • Errico S, Nicolucci C, Migliaccio M, Micale V, Mita DG, Diano N (2017) Analysis and occurrence of some phenol endocrine disruptors in two marine sites of the northern coast of Sicily (Italy). Marine Pollut Bull 120:68–74

    Article  CAS  Google Scholar 

  • Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage 104:19–34

    Article  CAS  Google Scholar 

  • Forni C, Braglia R, Harren FJ, Cristescu SM (2012) Stress responses of duckweed (Lemna minor L.) and water velvet (Azolla filiculoides Lam.) to anionic surfactant sodium-dodecyl-sulphate (SDS). Aquatic Toxicol 110:107–113

    Article  Google Scholar 

  • Frejd D, Dunaway K, Hill J, Van Maanen J, Carlson C (2016) The genomic and morphological effects of Bisphenol A on Arabidopsis thaliana. PLoS One 11(9):e0163028

    Article  Google Scholar 

  • Gorga M, Insa S, Petrovic M, Barceló D (2015) Occurrence and spatial distribution of edcs and related compounds in waters and sediments of iberian rivers. Sci Total Environ 503:69–86

    Article  Google Scholar 

  • Harborne JB (1973) Phenolic compounds. Phytochemical methods. Springer, Dordrecht, pp 33–88

    Chapter  Google Scholar 

  • Hassanzadeh M, Zarkami R, Sadeghi R (2021) Uptake and accumulation of heavy metals by water body and Azolla filiculoides in the Anzali wetland. Appl Water Sci 11(6):1–8

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hopkins WG, Hüner NPA (2009) Introduction to Plant Physiology, 4th edn. John Wiley and Sons, New York

    Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquat Bot 11:67–77

    Article  CAS  Google Scholar 

  • Jiao L, Ding H, Wang L, Zhou Q, Huang X (2017) Bisphenol A effects on the chlorophyll contents in soybean at different growth stages. Environ Pollut 223:426–434

    Article  CAS  Google Scholar 

  • ** S, Yang F, Xu Y, Dai H, Liu W (2013) Risk assessment of xenoestrogens in a typical domestic sewage-holding lake in China. Chemosphere 93:892–898

    Article  CAS  Google Scholar 

  • Kim D, Kwak JI, An YJ (2018) Effects of Bisphenol A in soil on growth, photosynthesis activity, and genistein levels in crop plants (Vigna radiata). Chemosphere 209:875–882

    Article  CAS  Google Scholar 

  • Khan N, Ali S, Zandi P, Mehmood A, Ullah S, Ikram M, Ismail MA, Babar MA (2020) Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak J Bot 52(2):355–363

    Article  CAS  Google Scholar 

  • Khare S, Singh NB, Singh A, Hussain I, Niharika K, Yadav V, Bano C, Yadav RK, Amist N (2020) Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J Plant Biol 63(3):203–216

    Article  CAS  Google Scholar 

  • Kumar U, Panneerselvam P, Priya H, Nayak AK (2020) Utilization of Azolla as livestock feed and microbial growth medium. NRRI News Letter 41:9–10

    Google Scholar 

  • Lalwani D, Ruan Y, Taniyasu S, Yamazaki E, Kumar NJI, Lam PKS, Wang X, Yamashita N (2020) Nationwide distribution and potential risk of Bisphenol analogues in Indian waters. Ecotoxicol Environ Saf 200:110718

    Article  CAS  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Annals Bot 89:871–885

    Article  CAS  Google Scholar 

  • Leão GA, Oliveira JA, Felipe RT, Farnese FS (2017) Phytoremediation of arsenic-contaminated water: the role of antioxidant metabolism of Azolla caroliniana Willd. (Salviniales). Acta Bot Bras 31:161–168

    Article  Google Scholar 

  • Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75–85

    Article  CAS  Google Scholar 

  • Li Q, Yan L, Ye L, Zhou J, Zhang B, Peng W, Zhang X, Li X (2018) Chinese black truffle (Tuber indicum) alters the ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles of the host tree Quercus aliena. Front Microbiol 18:2202

    Article  Google Scholar 

  • Jiefeng L, Xufa M, Yu L, Shenjuan Z, Boli Z, Jie H (2019) Effects of bisphenol A on growth, photosynthesis pigment and antioxidant system of Spirodela polyrrhiza. Asian J Ecotoxicol 2019:144–151

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals Bot 78:389–398

    Article  CAS  Google Scholar 

  • Maehly A, Chance B (1954) Catalases and peroxidases. Methods Biochem Anal 1:357–424

    CAS  Google Scholar 

  • Mathieu-Denoncourt J, Wallace SJ, de Solla SR, Langlois VS (2015) Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol 219:74

    Article  CAS  Google Scholar 

  • Mihaich EM, Friederich U, Caspers N, Hall AT, Klecka GM, Dimond SS, Staples CA, Ortego LS, Hentges SG (2009) Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants. Ecotoxicol Environ Saf 72:1392–1399

    Article  CAS  Google Scholar 

  • Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Roddick F, Lal B, Subudhi S, Bhaskar T, Mouradov A (2016) Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels 9:1–7

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Mohammed FS, Akgul H, Sevindik M, Khaled BMT (2018) Phenolic content and biological activities of Rhus coriaria var. zebaria. Fresenius Environ Bull 27:5694–5702

    CAS  Google Scholar 

  • Mohammed FS, Daştan T, Sevindik M, Selamoglu Z (2019) Antioxidant, antimicrobial activity and therapeutic profile of Satureja hortensis from Erzincan Province. Cumhuriyet Tıp Dergisi 41:558–562

    CAS  Google Scholar 

  • Panda SK, Upadhyay RK, Upadhyaya H (2006) Salinity stress-induced physiological and biochemical changes in Azolla pinnata. Acta Bot Hung 48:369–380

    Article  CAS  Google Scholar 

  • Paul B, Sarkar A, Roy S (2021) Appraising the stress responses in Azolla filiculoides elicited by short-term exposure of phenol. Plant Stress 2:100032

    Article  CAS  Google Scholar 

  • Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Edu 87(11):1123–1124. https://doi.org/10.1021/ed100697w

  • Prasad SM, Singh A, Singh P (2015) Physiological, biochemical and growth responses of Azolla pinnata to chlorpyrifos and cypermethrin pesticides exposure: a comparative study. Chem Ecol 31:285–298

  • Qiu Z, Wang L, Zhou Q (2013) Effects of Bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90:1274–1280

    Article  CAS  Google Scholar 

  • Roberts AE, Boylen CW, Nierzwicki-Bauer SA (2014) Effects of lead accumulation on the Azolla carolinianaAnabaena association. Ecotoxicol Environ Saf 102:100–104

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gomez MD, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Roy DC, Pakhira MC, Bera S (2016) A review on biology, cultivation and utilization of Azolla. Adv Life Sci 5(1):11–5

    Google Scholar 

  • Salehzadeh A, Naeemi AS, Arasteh A (2014) Biodiesel Production from Azolla filiculoides (water fern). Trop J Pharm Res 13:957–960

    Article  CAS  Google Scholar 

  • Salgueiro-González N, Turnes-Carou I, Viñas-Diéguez L, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2015) Occurrence of endocrine disrupting compounds in five estuaries of the northwest coast of Spain: ecological and human health impact. Chemosphere 131:241–247

    Article  Google Scholar 

  • Sánchez-Viveros G, Ferrera-Cerrato R, Alarcón A (2011) Short-term effects of arsenate-induced toxicity on growth, chlorophyll and carotenoid contents, and total content of phenolic compounds of Azolla filiculoides. Water Air Soil Pollut 217:455–462

    Article  Google Scholar 

  • Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27:483–486

    Article  CAS  Google Scholar 

  • Schilmiller AL, Charbonneau AL, Last RL (2012) Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. PNAS 109(40):16377–16382

    Article  CAS  Google Scholar 

  • Sevindik M, Akgul H, Pehlivan M, Selamoglu Z (2017) Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresenius Environ Bull 26:4757–4763

    CAS  Google Scholar 

  • Sharma R, Kumari A, Rajput S, Arora S, Rampal R, Kaur R (2019) Accumulation, morpho-physiological and oxidative stress induction by single and binary treatments of fluoride and low molecular weight phthalates in Spirodela polyrhiza L. Schleiden Sci Rep 9:1–9

    Google Scholar 

  • Singh H, Kumar D, Soni V (2020) Copper and mercury induced oxidative stresses and antioxidant responses of Spirodela polyrhiza (L.) Schleid. Biochemistry and Biophysics Reports 23:100781

    Article  Google Scholar 

  • Spanò C, Bottega S, Sorce C, Bartoli G, Ruffini Castiglione M (2019) TiO2 nanoparticles may alleviate cadmium toxicity in co-treatment experiments on the model hydrophyte Azolla filiculoides. Environ Sci Pollut Res 29:29872–29882

    Article  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Tian YS, ** XF, Fu XY, Zhao W, Han HJ, Zhu BM, Liu M, Yao QH (2014) Microarray analysis of differentially expressed gene responses to Bisphenol A in Arabidopsis. J Toxicol Sci 39:671–679

    Article  CAS  Google Scholar 

  • Tran TL, Miranda AF, Abeynayake SW, Mouradov A (2020) Differential production of phenolics, lipids, carbohydrates and proteins in stressed and unstressed aquatic plants Azolla Filiculoides and Azolla Pinnata. Biology 9:342

    Article  CAS  Google Scholar 

  • Upadhyay AR, Tripathi BD (2007) Principle and process of biofiltration of Cd, Cr Co, Ni & Pb from tropical opencast coalmine effluent. Water Air Soil Pollut 180:213–223

    Article  CAS  Google Scholar 

  • Usman A, Ahmad M (2016) From BPA to its analogues: Is it a safe journey. Chemosphere 158:131–142

    Article  CAS  Google Scholar 

  • Vafaei F, Khataee AR, Movafeghi A, Lisar SS, Zarei M (2012) Bioremoval of an azo dye by Azolla filiculoides: Study of growth, photosynthetic pigments and antioxidant enzymes status. Int Biodeterior Biodegradation 75:194–200

    Article  CAS  Google Scholar 

  • Vijayaraghavareddy P, Adhinarayanreddy V, Vemanna RS, Sreeman S, Makarla U (2017) Quantification of membrane damage/cell death using evan’s blue staining technique. Bio-protoc 7(16):e2519

  • Wahman R, Cruzeiro C, Graßmann J, Schröder P, Letzel T (2022) The changes in Lemna minor metabolomic profile: A response to diclofenac incubation. Chemosphere 287:132078

    Article  CAS  Google Scholar 

  • Wang Q, Wang L, Han R, Yang L, Zhou Q, Huang X (2015) Effects of Bisphenol A on antioxidant system in soybean seedling roots. Environ Toxicol Chem 34:1127–1133

    Article  CAS  Google Scholar 

  • Wen Y, Chen H, Shen C, Zhao M, Liu W (2011) Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species. Environ Sci Technol 45:4778–4784

    Article  CAS  Google Scholar 

  • **ang R, Shi J, Zhang H, Dong C, Liu L, Fu J, He X, Yan Y, Wu Z (2018) Chlorophyll a fluorescence and transcriptome reveal the toxicological effects of bisphenol a on an invasive cyanobacterium, Cylindrospermopsis raciborskii. Aquat Toxicol 200:188–196

    Article  CAS  Google Scholar 

  • **ao C, Wang L, Hu D, Zhou Q, Huang X (2019) Effects of exogenous Bisphenol A on the function of mitochondria in root cells of soybean (Glycine max L.) seedlings. Chemosphere 222:619–627

    Article  CAS  Google Scholar 

  • **ong J, An T, Zhang C, Li G (2015) Pollution profiles and risk assessment of pbdes and phenolic brominated flame retardants in water environments within a typical electronic waste dismantling region. Environ Geochem Health 37:457–473

    Article  CAS  Google Scholar 

  • Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Bisphenol A in hazardous waste landfill leachates. Chemosphere 42:415

    Article  CAS  Google Scholar 

  • Yamazaki E, Yamashita N, Taniyasu S, Lam J, Lam PK, Moon HB, Jeong Y, Kannan P, Achyuthan H, Munuswamy N, Kannan K (2015) Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf 122:565–572

    Article  CAS  Google Scholar 

  • Yang M, Fan Z, **e Y, Fang L, Wang X, Yuan Y, Li R (2020) Transcriptome analysis of the effect of bisphenol A exposure on the growth, photosynthetic activity and risk of microcystin-LR release by Microcystis aeruginosa. J Hazard Mater 397:122746

    Article  CAS  Google Scholar 

  • Zanganeh R, Jamei R, Rahmani F (2019) Role of salicylic acid and hydrogen sulfide in promoting lead stress tolerance and regulating free amino acid composition in Zea mays L. Acta Physiol Plant 41:1–9

    Article  CAS  Google Scholar 

  • Zazouli MA, Mahdavi Y, Bazrafshan E, Balarak D (2014) Phytodegradation potential of bisphenol-A from aqueous solution by Azolla Filiculoides. J Environ Health Sci Eng 12(1):1–5

    Article  Google Scholar 

  • Zhang J, Li X, Zhou L, Wang XL, Zhou Q, Huang X (2016) Analysis of effects of a new environmental pollutant, Bisphenol A, on antioxidant systems in soybean roots at different growth stages. Sci Rep 6:23782

    Article  CAS  Google Scholar 

  • Zhang J, Wang L, Zhou Q, Huang X (2018) Reactive oxygen species initiate a protective response in plant roots to stress induced by environmental bisphenol A. Ecotoxicol Environ Saf 154:197–205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University Grants Commission, Government of India for financial assistance on account of fellowship to Ashis Sarkar (UGC Ref. No. 685/ (CSIR-UGC NET DEC 2018)). The authors are thankful to DST-FIST support to the Department of Botany, University of North Bengal for microscopy. We acknowledge SAIF, IIT Bombay, India for the HRLC-MS analysis.

Author information

Authors and Affiliations

Authors

Contributions

ASperforming the experiments, compilation of the results, statistical analysis, and writing of the first draft.

SR—conceptualisation of the study, supervision, and the final reviewing and editing of the article.

NG—supervision of the result compilation and statistical analysis, final reviewing and editing of the article.

Corresponding author

Correspondence to Swarnendu Roy.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have their consent for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Gogoi, N. & Roy, S. Bisphenol-A incite dose-dependent dissimilitude in the growth pattern, physiology, oxidative status, and metabolite profile of Azolla filiculoides. Environ Sci Pollut Res 29, 91325–91344 (2022). https://doi.org/10.1007/s11356-022-22107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22107-8

Keywords

Navigation