Log in

Short-Term Effects of Arsenate-Induced Toxicity on Growth, Chlorophyll and Carotenoid Contents, and Total Content of Phenolic Compounds of Azolla filiculoides

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study evaluated the toxic effects of arsenic (As) on the growth, total antioxidant activity, total content of phenolic compounds, and content of photosynthetic pigments of Azolla filiculoides. The aquatic fern was propagated and exposed to Yoshida nutrient solution contaminated with sodium arsenate (Na2HAsO4·7H2O) at six concentrations (5, 10, 20, 30, 60, and 120 μg As mL−1), including the control without As contamination. Azolla cultures were kept under environmental chamber conditions 26°C, 12 h photoperiod and 80% HR for 96 h. Increased As concentrations (>30 μg mL−1) significantly diminished growth of A. filiculoides and the total content of chlorophyll and total phenolic compounds, but significantly enhanced of total carotenoid + xanthophylls content. The concentrations of 5 and 10 μg As mL−1 significantly stimulated the growth of A. filiculoides. This aquatic fern tolerates As concentrations lower than 30 μg mL−1, and its maximum As accumulation (28 μg g−1 dry weight) was achieved when exposed to 60 μg As mL−1, but showing clear symptoms of As toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alarcón, A., Davies, F. T., Jr., Autenrieth, R. L., & Zuberer, D. A. (2008). Arbuscular mycorrhiza and petroleum-degrading microorganisms enhanced phytoremediaton of petroleum-contaminated soil. International Journal of Phytoremediation, 10, 251–263.

    Article  Google Scholar 

  • Bačkor, M., Kováčik, J., Piovár, J., Pisani, T., & Loppi, S. (2009). Physiological aspect of cadmium and nickel toxicity in the lichens Peltigera rufescens and Cladina arbuscula Subsp. Mitis. Water, Air, & Soil Pollution. doi:10.100/s11270-009-0133-6.

    Google Scholar 

  • Bleeker, P. M., Schat, H., Vooijs, R., Verkleij, J. A. C., & Ernst, W. H. O. (2003). Mechanisms of arsenate tolerance in Cytisus striatus. New Phytologist, 157, 33–38.

    Article  CAS  Google Scholar 

  • Bruce, S. L., Noller, B. N., Grigg, A. H., Mullen, B. F., Mulligan, D. R., & Ritchie, P. J. (2003). A field study conducted at kidston gold mine to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle. Toxicology Letters, 137, 23–34.

    Article  CAS  Google Scholar 

  • Caille, N., Zhao, F. J., & McGrath, S. P. (2005). Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytologist, 165, 755–761.

    Article  CAS  Google Scholar 

  • Castro-Carrillo, L. A., Delgadillo-Martínez, J., Ferrera-Cerrato, R., & Alarcón, A. (2008). Phenanthrene dissipation by Azolla caroliniana utilizing bioaugmentation with hydrocarbonoclastic microorganisms. Interciencia, 33, 1–7 [In Spanish].

    Google Scholar 

  • Chao-Yang, W., & Tong-Bin, C. (2006). Arsenic accumulation by two brake ferns growing on arsenic mine and their potential in phytoremediation. Chemosphere, 63, 1048–1053.

    Article  Google Scholar 

  • Dere, S., Günes, T., & Sivaci, R. (1998). Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22, 13–17.

    Google Scholar 

  • Doh, S., Camusso, W., Mucciarelli, M., & Fusconi, A. (2010). Arsenate toxicity on the apices of Pisum sativum L. seedling roots: Effects on mitotic activity, chromatin integrity and microtubules. Environmental and Experimental Botany, 69, 17–23.

    Article  Google Scholar 

  • EPA (Environmental Protection Agency) (1994). Determination of trace elements in water and wastes by inductively coupled plasma-mass spectrometry. Method 200.8 Revision 5,4. In J. T. Creed, C. A. Brockhoff, T. D. Martin (eds.). US Environmental Protection Agency Cincinnati, OHIO 4568, 57pp.

  • Espinoza, Y., & Gutiérrez, R. (2003). Variabilidad intraespecifica de Azolla filiculoides colectadas en la zona centro-occidental de Venezuela. Revista de la Facultad de Agronomía (LUZ), 20, 156–167.

    Google Scholar 

  • Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: A potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284, 27–35.

    Article  CAS  Google Scholar 

  • Gravisu, C., Hernández-Allica, J., Barrutia, O., Alkorta, I., & Becerril, J. M. (2002). Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Review of Environmental Health, 17, 75–90.

    Google Scholar 

  • Hove, V. C., & Lejeune, A. (2002). The Azolla–Anabaena symbiosis. In. Biology and Environment. Proceeding of the Royal Irish Academy, 102B, 23–26.

  • Huang, J. W., Poynton, C. Y., Kochian, L. V., & Elless, M. P. (2004). Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns. Environmental Science & Technology, 38, 3412–3417.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton: CRC.

    Google Scholar 

  • Kanoun-Boulé, M., & Vicente, J. A. F. (2009). Ecophysiological tolerance of duckweeds exposed to copper. Aquatic Toxicology, 91, 1–9.

    Article  Google Scholar 

  • Kováčik, J., & Backor, M. (2007). Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess. Wate Air Soil Pollution, 185, 185–193.

    Article  Google Scholar 

  • Krosravi, M., Ganji, T. M., & Rakhshaee, R. (2005). Toxic effect of Pb, Cd, Ni and Zn on Azolla filiculoides in the international Anzali Wetland. International Journal of Environmental Science and Technology, 2, 35–40.

    Google Scholar 

  • Lepp, N. W. (1981). Effect of heavy metals pollution on plants. Applied Science Publishers. London and New Jersey. 1, 111–141.

  • Lesikar, B. J., Melton, R. H., Hare, M. F., Hopkins, J., & Dozier, M. C. (2006). Drinking water problems—arsenic: Texas cooperative extension (pp. 1–8). Texas A & M. L-5467S.

  • Ma, L. Q., Komart, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelly, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579–579.

    Article  CAS  Google Scholar 

  • Mascher, R., Lippmann, B., Holzinger, S., & Bergmann, H. (2002). Arsenate toxicity: Effects on oxidative stress reponse molecules and enzymes in red clover plants. Plant Science, 163, 961–969.

    Article  CAS  Google Scholar 

  • Masood, A., Zeeshan, M., & Abraham, G. (2008). Response of growth and antioxidant enzymes in Azolla plants (Azolla pinnata and Azolla filiculoides) exposed to UV-B. Acta Biologica Hungarica, 59, 247–258.

    Article  Google Scholar 

  • Matschullat, J. (2000). Arsenic in the geosphere—A review. Science of the Total Environment, 249, 297–312.

    Article  CAS  Google Scholar 

  • Matthäus, M. (2002). Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of Agricultural and Food Chemistry, 50, 3444–3452.

    Article  Google Scholar 

  • Meharg, A. A. (1994). Relationship between plant phosphorus status and the kinetics of arsenate influx in clones of Deschampsia cespitosa (L.) Beauv that differ in their tolerance to arsenate. Plant and Soil, 162, 99–106.

    Article  CAS  Google Scholar 

  • Meharg, A. A. (2002). Arsenic and old plants. New Phytologist, 156, 1–8.

    Article  Google Scholar 

  • Meharg, A. A., & Hartley-Witaker, M. J. (2002). Arsenic uptake and metabolism in arsenic plant species. New Phytologist, 154, 29–43.

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Macnair, M. R. (1991a). The mechanisms of arsenate tolerance in Deschampsia cespitosa (L.) Beauv and Agrostis capillaris L. New Phytologist, 119, 291–297.

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Macnair, M. R. (1991b). Uptake, accumulation and translocation of arsenate in arsenate-tolerant and nontolerant Holcus lanatus L. New Phytologist, 117, 225–231.

    Article  CAS  Google Scholar 

  • Miller, D. S., Shaw, J. R., Staton, C. R., Barnaby, R., Karlson, K. H., Hamilton, J. W., et al. (2007). MRP2 and acquired tolerance to inorganic arsenic in the kidney of killifish (Fundulus heteroclitus). Toxicological Sciences, 27, 1–41.

    Article  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants, and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  Google Scholar 

  • Ortiz-Catón, A., Quintero, L. R., & Ferrera-Cerrato, R. (1992). Efecto de metales pesados en el simbiosistema Azolla Anabaena. Terra, 12, 317–322 [In Spanish].

    Google Scholar 

  • Perales-Vela, H. V., González-Moreno, S., Montes-Horeasitas, C., & Cañizares-Villanueva, R. O. (2007). Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere, 67, 2274–2281.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Quintero-Lizaola, R., & Ferrera-Cerrato, R. (2000). Azolla helecho fijador de nitrógeno y su potencial en México. In J. J. Peña-Cabriales (Ed), La fijación biológica de nitrógeno en América Latina: El aporte de las técnicas isotópicas. Irapuato. México. [In Spanish].

  • Rahman, M. A., Hasegawa, H., Ueda, K., Maki, T., Okumura, C., & Rahman, M. M. (2007). Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere, 69, 493–499.

    Article  CAS  Google Scholar 

  • Rudra, D. T., Sudhakar, S., Seema, M., Nandita, S., Rakesh, T., Dharmendra, K. G., et al. (2006). Arsenic hazards: Strategies for tolerance and remediation by plants. Trends in Biotechnology, 25, 159–165.

    Google Scholar 

  • Sakihama, Y., Cohen, M. F., Grace, C. S., & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: Phenolics induces oxidative damage mediated by metals in plants. Toxicology, 177, 67–80.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–661.

    Article  CAS  Google Scholar 

  • Sánchez-Viveros, G., González-Mendoza, D., Alarcón, A., & Ferrera-Cerrato, R. (2010). Copper effects on photosynthetic activity and membrane leakage of Azolla filiculoides and A. caroliniana. International Journal of Agriculture & Biology, 12, 365–368.

    Google Scholar 

  • SAS Institute Inc. (2002). The SAS system for windows, ver. 9.0. Cary, USA: SAS Institute Inc.

    Google Scholar 

  • Sheng-Gen, H., Daryl, J., & Ming-Zu, W. (2005). Characterization of polyamine oxidase from the aquatic nitrogen-fixing fern Azolla imbricate. Plant Science, 169, 185–190.

    Article  Google Scholar 

  • Singh, N., Ma, L. Q., Srivastava, M., & Rathinasabapathi, B. (2006). Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plan Science, 170, 274–282.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–147.

    CAS  Google Scholar 

  • Stepniewska, Z., Bennicelli, R. P., Balakhnina, T. I., Szajnocha, K., Banach, A., & Wolinska, A. (2005). Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. International Agrophysics, 19, 251–255.

    CAS  Google Scholar 

  • Tu, C., & Ma, L. Q. (2002). Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. Journal of Environmental Quality, 31, 641–647.

    Article  CAS  Google Scholar 

  • Yoshida, S., Forno, D., Cock, J., & Gomez, K. (1971). Laboratory manual for physiological studies of rice (3rd ed.). Manila Philippines: International Rice Research Institute.

    Google Scholar 

  • Zhang, X., Ai-jun, L., Fang-Jie, Z., Guo-Zhong, X., Gui-Lan, D., & Yong-Guan, Z. (2008). Arsenic accumulation by the aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution, 156, 1156–1149.

    Article  Google Scholar 

  • Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2002). Arsenic hyperaccumulation by different ferns species. New Phytologist, 156, 27–31.

    Article  CAS  Google Scholar 

  • Zimmerman, W. J., Quintero-Lizaola, R., & Ferrera-Cerrato, R. (1993). The genetic identification of species of agronomic Azolla Lam. indigenous to Mexico. American Fern Journal, 83, 97–104.

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Adan Castillo-Cervantes for technical support during both establishment and maintenance of the experiment. Authors gratefully thank anonymous reviewers for invaluable comments and thorough revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Alarcón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Viveros, G., Ferrera-Cerrato, R. & Alarcón, A. Short-Term Effects of Arsenate-Induced Toxicity on Growth, Chlorophyll and Carotenoid Contents, and Total Content of Phenolic Compounds of Azolla filiculoides . Water Air Soil Pollut 217, 455–462 (2011). https://doi.org/10.1007/s11270-010-0600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0600-0

Keywords

Navigation