Log in

Motion of Lee–Yang Zeros

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the zeros of the partition function of the Ising model with ferromagnetic pair interactions and complex external field. Under the assumption that the graph with strictly positive interactions is connected, we vary the interaction (denoted by t) at a fixed edge. It is already known that each zero is monotonic (either increasing or decreasing) in t; we prove that its motion is local: the entire trajectories of any two distinct zeros are disjoint. If the underlying graph is a complete graph and all interactions take the same value \(t\ge 0\) (i.e., the Curie-Weiss model), we prove that all the principal zeros (those in \(i[0,\pi /2)\)) decrease strictly in t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ahlfors, L.V.: Complex Analysis. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill Book Co., New York (1978). An Introduction to the Theory of Analytic Functions of One Complex Variable

  2. Bena, I., Droz, M., Lipowski, A.: Statistical mechanics of equilibrium and nonequilibrium phase transitions: the Yang-Lee formalism. Int. J. Mod. Phys. B 19(29), 4269–4329 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Biskup, M., Borgs, C., Chayes, J.T., Kleinwaks, L.J., Kotecký, R.: Partition function zeros at first-order phase transitions: a general analysis. Commun. Math. Phys. 251(1), 79–131 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Biskup, M., Borgs, C., Chayes, J.T., Kotecký, R.: Partition function zeros at first-order phase transitions: Pirogov-Sinai theory. J. Stat. Phys. 116(1–4), 97–155 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Camia, F., Jiang, J., Newman, C.M.: Ising model with Curie-Weiss perturbation. J. Stat. Phys. 188, 1–23 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Camia, F., Jiang, J., Newman, C.M.: Monotonicity of Ursell functions in the Ising model. ar**v:2207.12247, (2022)

  7. Cardy, J.L.: Conformal invariance and the Yang-Lee edge singularity in two dimensions. Phys. Rev. Lett. 54(13), 1354–1356 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chio, I., He, C., Ji, A.L., Roeder, R.K.W.: Limiting measure of Lee-Yang zeros for the Cayley tree. Commun. Math. Phys. 370(3), 925–957 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Csordas, G., Smith, W., Varga, R.S.: Lehmer pairs of zeros, the de Bruijn-Newman constant \(\Lambda \), and the Riemann hypothesis. Constr. Approx. 10(1), 107–129 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Csordas, G., Varga, R.S.: Necessary and sufficient conditions and the Riemann hypothesis. Adv. Appl. Math. 11(3), 328–357 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fisher, M.E.: Yang-Lee edge singularity and \(\phi ^3\) field theory. Phys. Rev. Lett. 40(25), 1610–1613 (1978)

    Article  ADS  Google Scholar 

  12. Guerra, F., Rosen, L., Simon, B.: Correlation inequalities and the mass gap in \(P(\phi )_{2}\). III. Mass gap for a class of strongly coupled theories with nonzero external field. Commun. Math. Phys. 41, 19–32 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hale, J.K.: Ordinary Differential Equations, 2nd edn. Robert E. Krieger Publishing Co. Inc., Huntington (1980)

    MATH  Google Scholar 

  14. Kabluchko, Z.: Lee-Yang zeroes of the Curie-Weiss ferromagnet, unitary Hermite polynomials, and the backward heat flow. ar**v:2203.05533 (2022)

  15. Kortman, P.J., Griffiths, R.B.: Density of zeros on the Lee-Yang circle for two Ising ferromagnets. Phys. Rev. Lett. 27(21), 1439–1442 (1971)

    Article  ADS  Google Scholar 

  16. Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87(2), 410–419 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lieb, E.H., Sokal, A.D.: A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80(2), 153–179 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  18. Marden, M.: Geometry of Polynomials. Mathematical Surveys No. 3, 2nd edn. American Mathematical Society, Providence (1966)

    MATH  Google Scholar 

  19. Newman, C.M.: Zeros of the partition function for generalized Ising systems. Commun. Pure Appl. Math. 27, 143–159 (1974)

    Article  MathSciNet  Google Scholar 

  20. Newman, C.M.: Inequalities for Ising models and field theories which obey the Lee-Yang theorem. Commun. Math. Phys. 41, 1–9 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  21. Nishimori, H., Griffiths, R.B.: Structure and motion of the Lee-Yang zeros. J. Math. Phys. 24(11), 2637–2647 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Peng, X., Zhou, H., Wei, B.-B., Cui, J., Du, J., Liu, R.-B.: Experimental observation of Lee-Yang zeros. Phys. Rev. Lett. 114(1), 010601 (2015)

    Article  ADS  Google Scholar 

  23. Penrose, O., Lebowitz, J.L.: On the exponential decay of correlation functions. Commun. Math. Phys. 39, 165–184 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ruelle, D.: Extension of the Lee-Yang circle theorem. Phys. Rev. Lett. 26, 303–304 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  25. Simon, B., Griffiths, R.B.: The \((\phi ^{4})_{2}\) field theory as a classical Ising model. Commun. Math. Phys. 33, 145–164 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  26. Smith, H.L.: Monotone Dynamical Systems, volume 41 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1995). An Introduction to the Theory of Competitive and Cooperative Systems

  27. Sokal, A.D.: More inequalities for critical exponents. J. Stat. Phys. 25(1), 25–50 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  28. Yang, C.N., Lee, T.D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 2(87), 404–409 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first and second authors was partially supported by NSFC grant 11901394. The authors thank the reviewers for valuable comments and useful suggestions on simplifying the proofs of some lemmas, which we have used in the current version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian** Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Q., Jiang, J. & Newman, C.M. Motion of Lee–Yang Zeros. J Stat Phys 190, 56 (2023). https://doi.org/10.1007/s10955-023-03066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03066-x

Keywords

Navigation