Log in

Equilibrium Measures for a Class of Potentials with Discrete Rotational Symmetries

  • Published:
Constructive Approximation Aims and scope

Abstract

The asymptotic analysis of the eigenvalue distribution of \(N\times N\) random normal matrix models in the large \(N\) limit naturally leads to a logarithmic energy problem with external potential in the complex plane. In the present paper, we consider this variational problem for the class of matrix models whose associated external potential is of the special form \(|z|^{2n}+tz^d+\bar{t}\bar{z}^d\), where \(n\) and \(d\) are positive integers satisfying \(d\le 2n\). By exploiting the discrete rotational invariance of such potentials, a simple symmetry reduction procedure is used to calculate the equilibrium measure for all admissible values of \(n,d\), and \(t\). It is shown that, for fixed \(n\) and \(d\), there is a critical value \(|t|=t_\mathrm{cr}\) such that the support of the equilibrium measure is simply connected for \(|t|<t_\mathrm{cr}\) and has \(d\) connected components for \(|t|>t_\mathrm{cr}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balogh, F., Bertola, M., Lee, S.-Y., Mclaughlin, K.D.T.-R.: Strong asymptotics of the orthogonal polynomials with respect to a measure supported on the plane. Comm. Pure Appl. Math. 68(1), 112–172 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bleher, P.M., Kuijlaars, A.B.J.: Orthogonal polynomials in the normal matrix model with a cubic potential. Adv. Math. 230(3), 1272–1321 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chau, L.-L., Zaboronsky, O.: On the structure of correlation functions in the normal matrix model. Comm. Math. Phys. 196(1), 203–247 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Di Francesco, P., Gaudin, M., Itzykson, C., Lesage, F.: Laughlin’s wave functions, Coulomb gases and expansions of the discriminant. Int. J. Modern Phys. A 9(24), 4257–4351 (1994)

    Article  MATH  Google Scholar 

  5. Elbau, P.: Random Normal Matrices and Polynomial Curves (2007). ar**v:0707.0425

  6. Elbau, P., Felder, G.: Density of eigenvalues of random normal matrices. Comm. Math. Phys. 259(2), 433–450 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Entov, V.M., Etingof, P.I.: Viscous flows with time-dependent free boundaries in a non-planar Hele–Shaw cell. Eur. J. Appl. Math. 8(1), 23–35 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Etingof, P., Ma, X.: Density of eigenvalues of random normal matrices with an arbitrary potential, and of generalized normal matrices. SIGMA Symmetry Integr. Geom. Methods Appl. 3, Paper 048,13 (2007)

  9. Feinberg, J.: Non-Hermitian random matrix theory: summation of planar diagrams, the ‘single-ring’ theorem and the disc-annulus phase transition. J. Phys. A 39(32), 10029–10056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  11. Girko, V.L.: The circular law. Teor. Veroyatnost. i Primenen. 29(4), 669–679 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Gustafsson, B.: Quadrature identities and the Schottky double. Acta Appl. Math. 1(3), 209–240 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kostov, I.K., Krichever, I., Mineev-Weinstein, M., Wiegmann, P.B., Zabrodin, A.: The \(\tau \)-function for analytic curves. In: Random Matrix Models and Their Applications, Volume 40 of Mathematical Sciences Research Institute Publications, pp. 285–299. Cambridge Univ. Press, Cambridge (2001)

  14. Krichever, I., Marshakov, A., Zabrodin, A.: Integrable structure of the Dirichlet boundary problem in multiply-connected domains. Comm. Math. Phys. 259(1), 1–44 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Marshakov, A., Wiegmann, P., Zabrodin, A.: Integrable structure of the Dirichlet boundary problem in two dimensions. Comm. Math. Phys. 227(1), 131–153 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975). With a Chapter on Quadratic Differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV

  17. Richardson, S.: Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. J. Fluid Mech. 56, 609–618 (1972)

    Article  MATH  Google Scholar 

  18. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields, volume 316 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1997). Appendix B by Thomas Bloom

  19. Teodorescu, R., Bettelheim, E., Agam, O., Zabrodin, A., Wiegmann, P.: Normal random matrix ensemble as a growth problem. Nucl. Phys. B 704(3), 407–444 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wiegmann, P.B., Zabrodin, A.: Conformal maps and integrable hierarchies. Comm. Math. Phys. 213(3), 523–538 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zabrodin, A.: Matrix models and growth processes: from viscous flows to the quantum Hall effect. In: Applications of Random Matrices in Physics, Volume 221 of NATO Sci. Ser. II Math. Phys. Chem., pp. 261–318. Springer, Dordrecht (2006)

Download references

Acknowledgments

D.M. is grateful to K. McLaughlin for suggesting the problem and for the support provided during the initial stages of the present work. The authors would like to thank T. Grava for a thorough reading of the original manuscript and for numerous important remarks, and the anonymous referees for their helpful comments and suggestions. The present work was supported by the FP7 IRSES project RIMMP Random and Integrable Models in Mathematical Physics 2010–2014, the ERC project FroM-PDE Frobenius Manifolds and Hamiltonian Partial Differential Equations 2009-13, and the MIUR Research Project Geometric and Analytic Theory of Hamiltonian Systems in Finite and Infinite Dimensions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Balogh.

Additional information

Communicated by Vilmos Totik.

Appendices

Appendix A: Univalency

1.1 Pre-critical Case

Definition 2

A map \(f:\{|u|>1\}\rightarrow \mathbb {C}\) is starlike if it is univalent and the compact complement of its image is star-shaped w.r.t. the origin.

Theorem 2

[in [16]] Let \(f:\{|u|>1\}\rightarrow \mathbb {C}\), then \(f\) is starlike if and only if

$$\begin{aligned} \mathfrak {R}\left( u\frac{f'(u)}{f(u)}\right) >0, \qquad |u|>1. \end{aligned}$$
(28)

In order to prove that our pre-critical map

$$\begin{aligned} f(u)=ru\left( 1-\frac{\alpha }{u}\right) ^{\frac{d}{n}} \end{aligned}$$

is univalent, it suffices to show that (28) holds, i.e.,

$$\begin{aligned} \mathfrak {R}\left( 1+\frac{d}{n}\frac{\alpha }{u-\alpha }\right) >0. \end{aligned}$$

Thus we just need to check that

$$\begin{aligned} \mathfrak {R}\left( \frac{\alpha }{u-\alpha }\right) >-\frac{1}{2} \quad \text{ for }\ |u|>1. \end{aligned}$$

It is easy to see that \(\frac{\alpha }{u-\alpha }\) maps the exterior of the circle of radius \(|\alpha |\) into the half-plane \(\mathfrak {R}(z)>-\frac{1}{2}\). This proves that our conformal map is univalent in \(|u|>1\).

1.2 Post-critical Case

Let us consider the map

$$\begin{aligned} f(u)=-\frac{r}{\bar{\alpha }}\frac{1-\bar{\alpha }u}{u-\alpha }u\left( 1-\frac{\alpha }{u}\right) ^{\frac{d}{n}}. \end{aligned}$$

We can rescale \(u\rightarrow \frac{|\alpha |}{\bar{\alpha }}u\) so that

$$\begin{aligned} f(u)=-\frac{r}{\bar{\alpha }}\frac{1-|\alpha |u}{u-|\alpha |}u\left( 1-\frac{|\alpha |}{u}\right) ^{\frac{d}{n}}=-\frac{r}{\bar{\alpha }}(1-|\alpha |u)\left( 1-\frac{|\alpha |}{u}\right) ^{\frac{d}{n}-1}. \end{aligned}$$

We need the following lemma:

Lemma 2

(in [16]) Let \(f\) be a map analytic in \(\{|u|\ge 1\}\) and injective on \(\{|u|=1\}\); then \(f\) is univalent in \(\{|u|\ge 1\}\).

So we just need to prove that the image of unit circle has no self–intersections, i.e., \(f(u)=f(v)\) if and only if \(u=v\). We first look for the points \(u=\text{ e }^{i \mu }\) and \(v=\text{ e }^{i \nu }\) such that \(|f(u)|=|f(v)|\):

$$\begin{aligned} \left| \frac{1-|\alpha |u}{u-|\alpha |}\right| |u|\left| 1-\frac{|\alpha |}{u}\right| ^{\frac{d}{n}}&= \left| \frac{1-|\alpha |v}{v-|\alpha |}\right| |v|\left| 1-\frac{|\alpha |}{v}\right| ^{\frac{d}{n}},\\ \left| 1-\frac{|\alpha |}{u}\right| ^{\frac{d}{n}}&=\left| 1-\frac{|\alpha |}{v}\right| ^{\frac{d}{n}},\\ \left| 1-|\alpha |\text{ e }^{-i \mu }\right| ^{\frac{d}{n}}&=\left| 1-|\alpha |\text{ e }^{-i \nu }\right| ^{\frac{d}{n}},\\ \left| 1-|\alpha |\text{ e }^{-i \mu }\right| ^2&=\left| 1-|\alpha |\text{ e }^{-i \nu }\right| ^2,\\ 2-2|\alpha |\cos (\mu )&=2-2|\alpha |\cos (\nu ),\\ \cos (\mu )&=\cos (\nu ). \end{aligned}$$

Thus \(|f(\text{ e }^{i \mu })|=|f(\text{ e }^{i \nu })|\) if and only if \(\nu =\pm \mu \).

Now we just need to show that \(f(\text{ e }^{i \mu })\ne f(\text{ e }^{-i \mu })\) for \(\mu \ne k\pi \).

$$\begin{aligned} -\frac{r}{\bar{\alpha }}(1-|\alpha |\text{ e }^{i \mu })\left( 1-|\alpha |\text{ e }^{-i \mu }\right) ^{\frac{d}{n}-1}&=-\frac{r}{\bar{\alpha }}(1-|\alpha |\text{ e }^{-i \mu })\left( 1-|\alpha |\text{ e }^{i \mu }\right) ^{\frac{d}{n}-1},\\ (1-|\alpha |\text{ e }^{i \mu })\left( 1-|\alpha |\text{ e }^{-i \mu }\right) ^{\frac{d}{n}-1}&=(1-|\alpha |\text{ e }^{-i \mu })\left( 1-|\alpha |\text{ e }^{i \mu }\right) ^{\frac{d}{n}-1}. \end{aligned}$$

The left-hand side and the right-hand side are complex conjugates, so this equation has solution if and only if the image of \(\text{ e }^{i \mu }\) through the map

$$\begin{aligned} (1-|\alpha |\text{ e }^{i \mu })\left( 1-|\alpha |\text{ e }^{-i \mu }\right) ^{\frac{d}{n}-1} \end{aligned}$$
(29)

is real.

Let us change the variable \(y:=1-|\alpha |\text{ e }^{-i \mu }\): since \(|\alpha |<1\), \(y\) is contained in the unit disk centered at \(1\), which is contained in the half-plane \(\mathfrak {R}(y)>0\). In terms of \(y\), (29) assumes the simple form

$$\begin{aligned} \frac{\bar{y}}{y}y^{\frac{d}{n}}. \end{aligned}$$
(30)

The map \(w=y^{\frac{d}{n}}\) sends the half-plane \(\mathfrak {R}(y)>0\) into the set \(\left\{ w\in \mathbb {C}|-\frac{d}{2n}\pi <\arg (w)\right. \) \( \left. <\frac{d}{2n}\pi \right\} \), which, since \(0<d<2n\), is contained in \(\mathbb {C}\setminus \mathbb {R}_{-}\).

Written in its polar form, \(y=\rho \text{ e }^{i\lambda }\), (30) becomes

$$\begin{aligned} \rho ^{\frac{d}{n}}\text{ e }^{-i\frac{2n-d}{n}\lambda }. \end{aligned}$$

Thus, since \(-\frac{\pi }{2}<\lambda <\frac{\pi }{2}\), the previous number is real if and only if \(\lambda =0\), i.e., \(y\in \mathbb {R}\). This implies that \(1-|\alpha |\text{ e }^{-i\mu }\in \mathbb {R}\), but this can happen if and only if \(\mu =k\pi \).

Therefore Lemma 2 gives that the post-critical map \(f(u)\) is univalent in \(|u|>1\).

Appendix B: Analysis of the Equation for the Conformal Radius

Let us consider equation (22),

$$\begin{aligned} r^{\frac{4n}{d}-2}-\frac{T}{n}r^{\frac{2n}{d}-2}+\frac{n-d}{n}\frac{d^2}{n^2}|t|^2=0 \end{aligned}$$

for the conformal radius \(r\) as a function of \(t\). We need to show that (22) has a unique positive solution \(r=r_0\) such that

$$\begin{aligned} |\alpha |=\frac{d}{n}|t|r_0^{1-\frac{2n}{d}} <1, \end{aligned}$$
(31)

or equivalently,

$$\begin{aligned} |\alpha |^{2}=\frac{n}{n-d}\left( \frac{T}{n}r_{0}^{-\frac{2n}{d}}-1\right) <1. \end{aligned}$$
(32)

Solving the critical equation \(|\alpha |=1\) and using (22), we can obtain the critical values \(t_\mathrm{cr}\) and \(r_\mathrm{cr}:=r(t_\mathrm{cr})\) given by

$$\begin{aligned} t_\mathrm{cr}&=\frac{n}{d}\left( \frac{T}{2n-d}\right) ^{1-\frac{d}{2n}},\\ r_\mathrm{cr}&=\left( \frac{T}{2n-d}\right) ^{\frac{d}{2n}}. \end{aligned}$$

Clearly, the formulae above make sense only for \(d\ne n\) and \(d\ne 2n\). However, these cases are trivial, so we can restrict ourselves to the study of the cases \(0< d< n\) and \(n<d<2n\).

Proposition 3

Assume that \(|t|<t_\mathrm{cr}\).

  • For \(0< d<n\), Eq. (22) has two positive solutions \(r_{\pm }(|t|)\), with

    $$\begin{aligned} 0\le r_{-}(|t|)<r_{+}(|t|)\le \left( \frac{T}{n}\right) ^{\frac{d}{2n}} \quad \text{ and }\quad r_{-}(0)=0,\ r_{+}(0)= \left( \frac{T}{n}\right) ^{\frac{d}{2n}}. \end{aligned}$$

    With the choice \(r=r_{+}(|t|)\), the inequality (31) is satisfied, whereas the other solution \(r=r_{-}(|t|)\) is not compatible with (31).

  • For \(n< d < 2n\), Eq. (22) has a unique positive solution \(r_{0}(|t|)\) that is compatible with the inequality (31).

Proof

Let \(0< d < n\). Consider the function

$$\begin{aligned} y(r)= r^{\frac{4n}{d}-2}-\frac{T}{n}r^{\frac{2n}{d}-2} \end{aligned}$$

on the non-negative real axis. The only roots of \(y(r)=0\) are

$$\begin{aligned} r=0 \quad \text{ and } \quad r= \left( \frac{T}{n}\right) ^{\frac{d}{2n}}, \end{aligned}$$

and \(y(r)\) has a unique minimum at

$$\begin{aligned} r_\mathrm{min}=\left( \frac{T}{n}\frac{n-d}{2n-d}\right) ^{\frac{d}{2n}}, \end{aligned}$$

with

$$\begin{aligned} y(r_\mathrm{min})= -\frac{T}{2n-d}\left( \frac{T}{n}\frac{n-d}{2n-d}\right) ^{\frac{n-d}{n}}. \end{aligned}$$

Now it is easy to see that there exist precisely two solutions

$$\begin{aligned} 0 < r_{-} < r_\mathrm{min} < r_{+} < \left( \frac{T}{n}\right) ^{\frac{d}{2n}} \end{aligned}$$

for \(0<|t|<t_\mathrm{max}\), where

$$\begin{aligned} t_\mathrm{max}=\frac{n^2}{d}\left( \frac{T}{n}\frac{n-d}{2n-d}\right) ^{\frac{n-d}{2n}}\sqrt{\frac{T}{n(n-d)(2n-d)}}. \end{aligned}$$

Since

$$\begin{aligned} \frac{t_\mathrm{max}}{t_\mathrm{cr}}=\left( \frac{n}{n-d}\right) ^{\frac{d}{2n}}<1, \end{aligned}$$

this condition is always satisfied for \(0<|t|<t_\mathrm{cr}\). Moreover,

$$\begin{aligned} \frac{r_\mathrm{cr}}{r_\mathrm{min}} =\left( \frac{n}{n-d}\right) ^{\frac{d}{2n}}>1. \end{aligned}$$

Therefore with the choice \(r=r_{+}\), we have

$$\begin{aligned} |\alpha |^{2}=\frac{n}{n-d}\left( \frac{T}{n}r_{+}^{-\frac{2n}{d}}-1\right) <\frac{n}{n-d}\left( \frac{T}{n}r_\mathrm{cr}^{-\frac{2n}{d}}-1\right) =\frac{n}{n-d}\left( \frac{2n-d}{n}-1\right) {=}1. \end{aligned}$$

In order to prove that \(r_{-}\) does not satisfy (32), we write

$$\begin{aligned} |\alpha |^{2}= & {} \frac{n}{n-d}\left( \frac{T}{n}r_{-}^{-\frac{2n}{d}}-1\right) >\frac{n}{n-d}\left( \frac{T}{n}r_\mathrm{min}^{-\frac{2n}{d}}-1\right) \\= & {} \frac{n}{n-d}\left( \frac{2n-d}{n-d}-1\right) =\left( \frac{n}{n-d}\right) ^2>1. \end{aligned}$$

Therefore the only positive solution compatible with (31) is \(r=r_{+}(t)\).

For \(n< d< 2n\), the function \(y(r)\) is strictly increasing with

$$\begin{aligned} y(r)\rightarrow -\infty , \quad r\rightarrow 0_{+}, \quad \text{ and } \quad y(r) \rightarrow \infty , \quad r \rightarrow \infty , \end{aligned}$$

and therefore (22) has a unique solution for every value of \(|t|\). Since the unique root of \(y(r)=0\) is given by

$$\begin{aligned} r=\left( \frac{T}{n}\right) ^{\frac{d}{2n}}, \end{aligned}$$

for \(0<|t|<t_\mathrm{cr}\), we have

$$\begin{aligned} \left( \frac{T}{n}\right) ^{\frac{d}{2n}}<r_{0}(|t|)<r_\mathrm{cr} \end{aligned}$$

and hence

$$\begin{aligned} |\alpha |^{2}{=}\frac{n}{d-n}\left( 1-\frac{T}{n}r_{0}^{-\frac{2n}{d}}\right) <\frac{n}{d-n}\left( 1-\frac{T}{n}r_\mathrm{cr}^{-\frac{2n}{d}}\right) =\frac{n}{d-n}\left( 1-\frac{2n-d}{n}\right) =1, \end{aligned}$$

as required. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balogh, F., Merzi, D. Equilibrium Measures for a Class of Potentials with Discrete Rotational Symmetries. Constr Approx 42, 399–424 (2015). https://doi.org/10.1007/s00365-015-9283-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-015-9283-5

Keywords

Mathematics Subject Classification

Navigation