Log in

Ising Model with Curie–Weiss Perturbation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Consider the nearest-neighbor Ising model on \(\Lambda _n:=[-n,n]^d\cap {\mathbb {Z}}^d\) at inverse temperature \(\beta \ge 0\) with free boundary conditions, and let \(Y_n(\sigma ):=\sum _{u\in \Lambda _n}\sigma _u\) be its total magnetization. Let \(X_n\) be the total magnetization perturbed by a critical Curie–Weiss interaction, i.e.,

$$\begin{aligned} \frac{d F_{X_n}}{d F_{Y_n}}(x):=\frac{\exp [x^2/\left( 2\langle Y_n^2 \rangle _{\Lambda _n,\beta }\right) ]}{\left\langle \exp [Y_n^2/\left( 2\langle Y_n^2\rangle _{\Lambda _n,\beta }\right) ]\right\rangle _{\Lambda _n,\beta }}, \end{aligned}$$

where \(F_{X_n}\) and \(F_{Y_n}\) are the distribution functions for \(X_n\) and \(Y_n\) respectively. We prove that for any \(d\ge 4\) and \(\beta \in [0,\beta _c(d)]\) where \(\beta _c(d)\) is the critical inverse temperature, any subsequential limit (in distribution) of \(\{X_n/\sqrt{{\mathbb {E}}\left( X_n^2\right) }:n\in {\mathbb {N}}\}\) has an analytic density (say, \(f_X\)) all of whose zeros are pure imaginary, and \(f_X\) has an explicit expression in terms of the asymptotic behavior of zeros for the moment generating function of \(Y_n\). We also prove that for any \(d\ge 1\) and then for \(\beta \) small,

$$\begin{aligned} f_X(x)=K\exp (-C^4x^4), \end{aligned}$$

where \(C=\sqrt{\Gamma (3/4)/\Gamma (1/4)}\) and \(K=\sqrt{\Gamma (3/4)}/(4\Gamma (5/4)^{3/2})\). Possible connections between \(f_X\) and the high-dimensional critical Ising model with periodic boundary conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aizenman, M.: Geometric analysis of \(\varphi ^4\) fields and Ising models. parts I and II. Commun. Math. Phys. 86(1), 1–48 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47(3), 343–374 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aizenman, M., Duminil-Copin, H.: Marginal triviality of the scaling limits of critical 4D Ising and \(\phi ^4_4\) models. Ann. Math. 194(1), 163–235 (2021)

    Article  MathSciNet  Google Scholar 

  4. Camia, F., Garban, C., Newman, C.M.: Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits. Ann. l’IHP Prob. Stat. 52(1), 146–161 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Camia, F., Jiang, J., Newman, C.M.: The effect of free boundary conditions on the Ising model in high dimensions. Probab. Theory Relat. Fields 181(1), 311–328 (2021)

    Article  MathSciNet  Google Scholar 

  6. Chio, I., He, C., Ji, A.L., Roeder, R.K.: Limiting measure of Lee-Yang zeros for the Cayley tree. Commun. Math. Phys. 370(3), 925–957 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Durrett, R.: Probability: Theory and Examples, vol. 49. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  8. Ellis, R.S., Newman, C.M.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 44(2), 117–139 (1978)

    Article  MathSciNet  Google Scholar 

  9. Ellis, R.S., Newman, C.M., Rosen, J.S.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 51(2), 153–169 (1980)

    Article  MathSciNet  Google Scholar 

  10. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  11. Fröhlich, J.: On the triviality of \(\lambda \phi _d^4\) theories and the approach to the critical point in \(d\ge 4\) dimensions. Nucl. Phys. B 200(2), 281–296 (1982)

    Article  ADS  Google Scholar 

  12. Greenstein, D.S.: On the analytic continuation of functions which map the upper half plane into itself. J. Math. Anal. Appl. 1, 355–362 (1960)

    Article  MathSciNet  Google Scholar 

  13. Griffiths, R.B., Hurst, C.A., Sherman, S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11(3), 790–795 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  14. Grimm, J., Elçi, E.M., Zhou, Z., Garoni, T.M., Deng, Y.: Geometric explanation of anomalous finite-size scaling in high dimensions. Phys. Rev. Lett. 118(11), 115701 (2017)

    Article  ADS  Google Scholar 

  15. Grimmett, G.R.: The Random-Cluster Model, vol. 333. Springer, New York (2006)

    Book  Google Scholar 

  16. Hutchcroft, T., Michta, E., Slade, G.: High-dimensional near-critical percolation and the torus plateau. ar**v preprint ar**v:2107.12971 (2021)

  17. Lee, T.-D., Yang, C.-N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87(3), 410 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  18. Marden, M.: Geometry of Polynomials, vol. 3. American Mathematical Soc, Providence (1966)

    MATH  Google Scholar 

  19. Newman, C.M.: Inequalities for Ising models and field theories which obey the Lee-Yang theorem. Commun. Math. Phys. 41(1), 1–9 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  20. Newman, C.M.: Fourier transforms with only real zeros. Proc. Am. Math. Soc. 61(2), 245–251 (1976)

    Article  MathSciNet  Google Scholar 

  21. Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74(2), 119–128 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  22. Newman, C.M., Wu, W.: Lee-Yang property and Gaussian multiplicative chaos. Commun. Math. Phys. 369(1), 153–170 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ott, S.: Weak mixing and analyticity of the pressure in the Ising model. Commun. Math. Phys. 377(1), 675–696 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Papathanakos, V.: Finite-size effects in high-dimensional statistical mechanical systems: the Ising model with periodic boundary conditions. PhD Thesis Princeton University, Princeton, New Jersey (2006)

  25. Peters, H., Regts, G.: Location of zeros for the partition function of the Ising model on bounded degree graphs. J. Lond. Math. Soc. 101(2), 765–785 (2020)

    Article  MathSciNet  Google Scholar 

  26. Rosenblum, M., Rovnyak, J.: Topics in Hardy Classes and Univalent Functions. Springer, New York (1994)

    Book  Google Scholar 

  27. Ruelle, D.: Extension of the Lee-Yang circle theorem. Phys. Rev. Lett. 26(6), 303 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  28. Simon, B., Griffiths, R.B.: The \((\phi ^4)_2\) field theory as a classical Ising model. Commun. Math. Phys. 33(2), 145–164 (1973)

    Article  ADS  Google Scholar 

  29. Slade, G.: The near-critical two-point function and the torus plateau for weakly self-avoiding walk in high dimensions. ar**v preprint ar**v:2008.00080 (2020)

  30. Wittmann, M., Young, A.: Finite-size scaling above the upper critical dimension. Phys. Rev. E 90(6), 062137 (2014)

    Article  ADS  Google Scholar 

  31. Yang, C.-N., Lee, T.-D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87(3), 404 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zhou, Z., Grimm, J., Deng, Y., Garoni, T.M.: Random-length random walks and finite-size scaling on high-dimensional hypercubic lattices I: Periodic boundary conditions. ar**v preprint ar**v:2008.00913 (2020)

  33. Zhou, Z., Grimm, J., Fang, S., Deng, Y., Garoni, T.M.: Random-length random walks and finite-size scaling in high dimensions. Phys. Rev. Lett. 121(18), 185701 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research of the second author was partially supported by NSFC grant 11901394 and that of the third author by US-NSF grant DMS-1507019. The authors thank two anonymous reviewers for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian** Jiang.

Additional information

Communicated by Aernout van Enter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Limit Distribution of Lee–Yang Zeros When \(\beta <\beta _c(d)\)

Appendix: Limit Distribution of Lee–Yang Zeros When \(\beta <\beta _c(d)\)

In this appendix, we prove that when \(\beta <\beta _c(d)\), the limiting distribution of Lee–Yang zeros has no mass in an arc containing \(\exp (i0)\) of the unit circle. This is stated as a conjecture in Sect. 1.3 of [6]. As can be seen from below, the proof follows essentially from Theorem 1.2 of [12] and Theorem 1.5 of [23]. We present a slightly different and relatively self-contained proof here which might be better suited to the context. We came up with this proof before we knew of the existence of [12].

Let \(\Lambda \subseteq {\mathbb {Z}}^d\) be finite. The Ising model on \(\Lambda \) at inverse temperature \(\beta \ge 0\) with free boundary conditions and external field \(h\in {{\mathbb {R}}}\) is defined by the probability measure \({\mathbb {P}}_{\Lambda ,\beta ,h}\) on \(\{-1,+1\}^{\Lambda }\) such that for each \(\sigma \in \{-1,+1\}^{\Lambda }\)

$$\begin{aligned} {\mathbb {P}}_{\Lambda ,\beta ,h}(\sigma ):=\frac{\exp \left[ \beta \sum _{\{u,v\}}\sigma _u\sigma _v+h\sum _{u\in \Lambda }\sigma _u\right] }{Z_{\Lambda ,\beta ,h}}, \end{aligned}$$
(127)

where the first sum is over all nearest-neighbor edges in \(\Lambda \), and \(Z_{\Lambda ,\beta ,h}\) is the partition function that makes (127) a probability measure. In this appendix, we will consider complex \(h\in {\mathbb {C}}\). A famous result due to Lee and Yang [17] is that \(Z_{\Lambda ,\beta ,h}\ne 0\) if \(h\notin i{\mathbb {R}}\) where \(i{\mathbb {R}}\) denotes the pure imaginary axis. So the fraction in (127) is well-defined if \(h\notin i{\mathbb {R}}\) but it could take a complex value, and thus \({\mathbb {P}}_{\Lambda ,\beta ,h}\) is a complex measure. Let \(\langle \cdot \rangle _{\Lambda ,\beta ,h}\) denote the expectation with respect to \({\mathbb {P}}_{\Lambda ,\beta ,h}\). For example, the magnetization at \(u\in \Lambda \) is defined by

$$\begin{aligned} \langle \sigma _u\rangle _{\Lambda ,\beta ,h}:=\frac{\sum _{\sigma \in \{-1,+1\}^{\Lambda }}\sigma _u\exp \left[ \beta \sum _{\{u,v\}}\sigma _u\sigma _v+h\sum _{u\in \Lambda }\sigma _u\right] }{Z_{\Lambda ,\beta ,h}}. \end{aligned}$$
(128)

Let \(\Lambda _n:=[-n,n]^d\cap {\mathbb {Z}}^d\) and \(E_n\) be the set of all nearest-neighbor edges \(\{u,v\}\) with \(u,v\in \Lambda _n\). Note that

$$\begin{aligned} Z_{\Lambda _n,\beta ,h}&=\sum _{\sigma \in \{-1,+1\}^{\Lambda _n}}\exp \left[ \beta \sum _{\{u,v\}\in E_n}\sigma _u\sigma _v+h\sum _{u\in \Lambda _n}\sigma _u\right] \end{aligned}$$
(129)
$$\begin{aligned}&=\exp \left[ \beta |E_n|+h|\Lambda _n|\right] \sum _{\sigma \in \{-1,+1\}^{\Lambda _n}}\exp \left[ \beta \sum _{\{u,v\}\in E_n}(\sigma _u\sigma _v-1)+h\sum _{u\in \Lambda _n}(\sigma _u-1)\right] . \end{aligned}$$
(130)

Let \(z=e^{-2h}\) throughout the appendix and write \(Z_{\Lambda _n,\beta }(z):=Z_{\Lambda _n,\beta ,h}\). Then the outmost sum in (130) is a polynomial of z with degree \(|\Lambda _n|\). So by the fundamental theorem of algebra, \(Z_{\Lambda _n,\beta }(z)\) has exactly \(|\Lambda _n|\) complex roots. The Lee–Yang circle theorem [17] says that these \(|\Lambda _n|\) roots are on the unit circle \(\partial {\mathbb {D}}\) where \({\mathbb {D}}:=\{z\in {\mathbb {C}}:|z|<1\}\) is the unit disk. So we may assume that these roots are

$$\begin{aligned} \exp (i\theta _{1,n}),\exp (i\theta _{2,n}),\dots ,\exp (i\theta _{|\Lambda _n|,n}) \text { where } 0<\theta _{1,n}\le \theta _{2,n}\le \dots \le \theta _{|\Lambda _n|,n}<2\pi .\nonumber \\ \end{aligned}$$
(131)

Note that we have used the fact that \(Z_{\Lambda _n,\beta }(1)>0\). By the spin-flip symmetry, \(Z_{\Lambda _n,\beta ,-h}=Z_{\Lambda _n,\beta ,h}\) for any \(h\in {\mathbb {C}}\). As a result, those \(|\Lambda _n|\) roots in (131) are symmetric with respect to the real-axis. Combining (130) and (131), we have

$$\begin{aligned} Z_{\Lambda _n,\beta }(z)=\exp [\beta |E_n|-(\ln z)|\Lambda _n|/2]\prod _{j=1}^{|\Lambda _n|}\left[ z-\exp (i\theta _{j,n})\right] ,~ z\in {\mathbb {C}}\setminus (-\infty ,0]. \end{aligned}$$
(132)

Here we take out \((-\infty ,0]\) from \({\mathbb {C}}\) so that \(h=-(\ln z)/2\) is analytic in this slit domain. Therefore,

$$\begin{aligned} \frac{\partial \ln Z_{\Lambda _n,\beta }(z)}{\partial z}=-\frac{|\Lambda _n|}{2z}+\sum _{j=1}^{|\Lambda _n|}\frac{1}{z-\exp (i\theta _{j,n})},~\forall z\in {\mathbb {D}}\setminus (-1,0]. \end{aligned}$$
(133)

It is easy to see that

$$\begin{aligned} \left\langle \sum _{u\in \Lambda _n}\sigma _u\right\rangle _{\Lambda _n,\beta ,h}= & {} \frac{\partial \ln Z_{\Lambda _n,\beta ,h}}{\partial h}=\frac{\partial \ln Z_{\Lambda _n,\beta }(z)}{\partial z}\frac{\partial z}{\partial h}\nonumber \\&=-2z\frac{\partial \ln Z_{\Lambda _n,\beta }(z)}{\partial z},~\forall z\in {\mathbb {D}}\setminus (-1,0]. \end{aligned}$$
(134)

We define the average magnetization density in \(\Lambda _n\) by

$$\begin{aligned} m_{\Lambda _n}(z):=\frac{\left\langle \sum _{u\in \Lambda _n}\sigma _u\right\rangle _{\Lambda _n,\beta ,h}}{|\Lambda _n|},~\forall z\in {\mathbb {C}}\setminus \partial {\mathbb {D}}, \end{aligned}$$
(135)

where we have dropped the \(\beta \) dependence in \(m_{\Lambda _n}(z)\). By (133) and (134), we have

$$\begin{aligned} m_{\Lambda _n}(z)= & {} 1-\frac{2z}{|\Lambda _n|}\sum _{j=1}^{|\Lambda _n|}\frac{1}{z-\exp (i\theta _{j,n})}\nonumber \\&=\frac{1}{|\Lambda _n|}\sum _{j=1}^{|\Lambda _n|}\frac{\exp (i\theta _{j,n})+z}{\exp (i\theta _{j,n})-z},~\forall z\in {\mathbb {D}}\setminus (-1,0]. \end{aligned}$$
(136)

By using the definition of \(\langle \cdot \rangle _{\Lambda ,\beta ,h}\) (see (128)), we know that \(m_{\Lambda _n}(z)\) is a rational function of z with poles on \(\partial {\mathbb {D}}\), and thus (136) holds for each \(z\in {\mathbb {D}}\). We define the empirical distribution

$$\begin{aligned} \mu _n:=\frac{1}{|\Lambda _n|}\sum _{j=1}^{|\Lambda _n|}\delta _{\exp (i\theta _{j,n})}, \end{aligned}$$
(137)

where \(\delta _{\exp (i\theta _{j,n})}\) is the unit Dirac point measure at \(\exp (i\theta _{j,n})\). Then

$$\begin{aligned} m_{\Lambda _{n}}(z)=\int _{\partial {\mathbb {D}}}\frac{e^{i\theta }+z}{e^{i\theta }-z}d\mu _{n}(e^{i\theta }),~\forall z\in {\mathbb {D}}. \end{aligned}$$
(138)

Since \(\mu _n\)’s live on the unit circle, \(\{\mu _n:n\in {\mathbb {N}}\}\) is tight. So there is a subsequence of \({\mathbb {N}}\), \(\{n_k:k\in {\mathbb {N}}\}\), such that \(\mu _{n_k}\Longrightarrow \mu \) as \(k\rightarrow \infty \) where \(\mu \) is some probability measure on \(\partial {\mathbb {D}}\). We will see later that \(\mu \) is actually unique. Therefore,

$$\begin{aligned} m_{\Lambda _{n_k}}(z)=\int _{\partial {\mathbb {D}}}\frac{e^{i\theta }+z}{e^{i\theta }-z}d\mu _{n_k}(e^{i\theta })\rightarrow \int _{\partial {\mathbb {D}}}\frac{e^{i\theta }+z}{e^{i\theta }-z}d\mu (e^{i\theta }) \text { as }k\rightarrow \infty ,~\forall z\in {\mathbb {D}}. \end{aligned}$$
(139)

Note that

$$\begin{aligned} \Re m_{\Lambda _n}(z)=\int _{\partial {\mathbb {D}}}\Re \frac{e^{i\theta }+z}{e^{i\theta }-z}d\mu _{n}(e^{i\theta })=\int _{\partial {\mathbb {D}}}\frac{1-|z|^2}{|e^{i\theta }-z|^2}d\mu _n(e^{i\theta })>0,~\forall z\in {\mathbb {D}}, \end{aligned}$$
(140)

and \(m_{\Lambda _n}(0)=1\). So \(m_{\Lambda _n}\) is a Herglotz function. See Sect. 8.4 of [26] for more details. From (138), we know

$$\begin{aligned} |m_{\Lambda _n}(z)|\le \frac{1+r}{1-r}, \text { for any } z \text { satisfying } |z|\le r<1. \end{aligned}$$
(141)

So \(\{m_{\Lambda _n}:n\in {\mathbb {N}}\}\) is locally uniformly bounded. It is well-known that

$$\begin{aligned} \lim _{n\rightarrow \infty }m_{\Lambda _n}(z)=\langle \sigma _0\rangle _{{\mathbb {Z}}^d,\beta ,h},~\forall z\in (0,1), \end{aligned}$$
(142)

where \(\langle \cdot \rangle _{{\mathbb {Z}}^d,\beta ,h}\) is the expectation with respect to the unique infinite volume measure when \(\beta \ge 0\) and \(h>0\) (see, e.g., Proposition 3.29 and Theorem 3.46 of [10]). So by Vitali’s theorem (see, e.g., Theorem B.25 of [10]),

$$\begin{aligned} m(z):=\lim _{n\rightarrow \infty }m_{\Lambda _n}(z) \end{aligned}$$
(143)

exists locally uniformly on \({\mathbb {D}}\) and m is a Herglotz function. Comparing (139) and (143), we obtain

$$\begin{aligned} m(z)=\int _{\partial {\mathbb {D}}}\frac{e^{i\theta }+z}{e^{i\theta }-z}d\mu (e^{i\theta }),~\forall z\in {\mathbb {D}}. \end{aligned}$$
(144)

We define

$$\begin{aligned} m(z):=-m(1/z),~\forall z\in {\mathbb {C}}\setminus \bar{{\mathbb {D}}}. \end{aligned}$$
(145)

Since \(\langle \sigma _x\rangle _{\Lambda _n,\beta ,h}=-\langle \sigma _x\rangle _{\Lambda _n,\beta ,-h}\) for any \(x\in \Lambda _n\) and \(h\in {\mathbb {C}}\setminus i{\mathbb {R}}\), we get

$$\begin{aligned} m(z)=\lim _{n\rightarrow \infty }m_{\Lambda _n}(z),~\forall z\in {\mathbb {C}}\setminus \bar{{\mathbb {D}}}. \end{aligned}$$
(146)

The following Stieltjes inversion formula on page 12 of [26] will be very import to our analysis of \(\mu \).

Theorem A

(Stieltjes Inversion Formula) Let \(\gamma :=\{e^{it}: a<t<b\}\) be an open arc on \(\partial {\mathbb {D}}\) with endpoints \(e^{ia}\) and \(e^{ib}\), \(0<b-a<2\pi \). Then

$$\begin{aligned} \mu (\gamma )+\frac{1}{2}\mu (\{e^{ia}\})+\frac{1}{2}\mu (\{e^{ib}\})=\lim _{r\uparrow 1}\frac{1}{2\pi }\int _a^b \Re m(re^{i\theta }) d\theta . \end{aligned}$$
(147)

In particular, Theorem A implies the \(\mu \) that we obtained from the subsequential limit is unique, that is, we have \(\mu _n\Longrightarrow \mu \) as \(n\rightarrow \infty \). We call \(\mu \) the limiting distribution of Lee–Yang zeros. Note that \(\mu \) is actually a function of \(\beta \). Let \(\beta _c(d)\) be the critical inverse temperature of the Ising model on \({\mathbb {Z}}^d\). We are ready to prove the main result about \(\mu \).

Theorem B

For any \(d\ge 1\) and any \(\beta \in [0,\beta _c(d))\), there is \(\epsilon >0\) (which only depends on \(\beta \) and d) such that

$$\begin{aligned} \mu \left( \{e^{it}:-\epsilon<t<\epsilon \}\right) =0. \end{aligned}$$
(148)

Proof

By Theorem A,

$$\begin{aligned}&\mu \left( \{e^{it}:-\epsilon<t<\epsilon \}\right) +\frac{1}{2}\mu \left( \{e^{i\epsilon }\}\right) +\frac{1}{2}\mu \left( \{e^{i\epsilon }\}\right) =\lim _{r\uparrow 1}\frac{1}{2\pi }\int _{-\epsilon }^{\epsilon } \Re m(re^{i\theta }) d\theta \end{aligned}$$
(149)
$$\begin{aligned}&\quad =\lim _{r\uparrow 1}\frac{1}{2\pi }\left[ \int _{-\epsilon }^{0} \Re m(re^{i\theta }) d\theta +\int _{0}^{\epsilon } \Re m(re^{i\theta }) d\theta \right] \end{aligned}$$
(150)
$$\begin{aligned}&\quad =\lim _{r\uparrow 1}\frac{1}{2\pi }\left[ \int _{0}^{\epsilon } \Re m(re^{-i\theta }) d\theta +\int _{0}^{\epsilon } \Re m(re^{i\theta }) d\theta \right] . \end{aligned}$$
(151)

By Theorem 1.5 of [23], we have that m(z) is complex analytic in a neighborhood of \(z=1\). So we may pick \(\epsilon \) small such that m is analytic in \(D(1,2\epsilon ):=\{z\in {\mathbb {C}}:|z-1|<2\epsilon \}\). Then both \(\Re m(re^{-i\theta }) \) and \(\Re m(re^{i\theta }) \) are bounded if \(re^{-i\theta }\) and \(re^{i\theta }\) are in \(D(1,\epsilon )\). The dominated converge theorem implies that

$$\begin{aligned} \mu \left( \{e^{it}:-\epsilon<t<\epsilon \}\right) +\frac{1}{2}\mu \left( \{e^{i\epsilon }\}\right) +\frac{1}{2}\mu \left( \{e^{i\epsilon }\}\right) \end{aligned}$$
(152)
$$\begin{aligned} =\frac{1}{2\pi }\int _{0}^{\epsilon }\left[ \lim _{r\uparrow 1}\Re m(re^{-i\theta }) +\lim _{r\uparrow 1} \Re m(re^{i\theta })\right] d\theta . \end{aligned}$$
(153)

By (145) and (146), and continuity of m in \(D(1,2\epsilon )\), we have

$$\begin{aligned} \lim _{r\uparrow 1}\Re m(re^{-i\theta })=- \lim _{r\uparrow 1}\Re m(r^{-1}e^{i\theta })=-\lim _{r\uparrow 1}\Re m(re^{i\theta }). \end{aligned}$$
(154)

Plugging this into (153), we get

$$\begin{aligned} \mu \left( \{e^{it}:-\epsilon<t<\epsilon \}\right) +\frac{1}{2}\mu \left( \{e^{i\epsilon }\}\right) +\frac{1}{2}\mu \left( \{e^{i\epsilon }\}\right) =0, \end{aligned}$$
(155)

which concludes the proof of the theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camia, F., Jiang, J. & Newman, C.M. Ising Model with Curie–Weiss Perturbation. J Stat Phys 188, 5 (2022). https://doi.org/10.1007/s10955-022-02935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02935-1

Keywords

Navigation