Log in

Fresh terrestrial detritus fuels both heterotrophic and autotrophic activities in the planktonic food web of a tropical reservoir: a mesocosm study

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Inland aquatic ecosystems play an important role in the global carbon cycle as they actively mineralize large amounts of terrestrial organic matter. However, there is not much evidence that this allochthonous organic matter affects the energy and matter flow through trophic chain via the microbial food web in tropical reservoirs. We hypothesize that the fresh terrestrial dissolved organic matter (DOM) input in aquatic ecosystems increases net heterotrophy via microbes. A field experiment was conducted in mesocosms, with two treatments: one received detritus input of freshly sampled terrestrial vegetation and the other treatment had no additions (control). The detritus input resulted in increased net heterotrophy and respiration rates after 2 days and increased primary production after 21 days. Moreover, it also changed the zooplankton community to the dominance of copepods, cyclopoids and rotifers, which could have stabilized bacterial abundance and increased bacterial respiration (BR). Our results suggest that fresh terrestrial organic matter input in aquatic systems experiencing wide water level fluctuations (e.g. due to changes in climatic patterns) affect metabolism through two main pathways: (i) initially increasing net heterotrophy via direct DOM bacterial mineralization and planktonic respiration, (ii) later stimulating primary production and net autotrophy due to the nutrients mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abril, G., S. Bouillon, F. Darchambeau, C. R. Teodoru, T. R. Marwick, F. Tamooh, O. F. Ochieng, N. Geeraert, L. Deirmendjian, P. Polsenaere & A. V. Borges, 2015. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences. 12: 67–78.

    Article  Google Scholar 

  • Amado, A. M., F. M. Pereira, L. O. Vidal, H. Sarmento, A. L. Suhett, V. F. Farjalla, J. B. Cotner & F. Roland, 2013. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Frontiers in Microbiology. 4: 1–8.

    Article  Google Scholar 

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater. - American Public Health Association.

  • Azam, F., T. Fenchel, J. D. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water – column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Berggren, M., J.-F. Lapierre & Del Giorgio, P. A. (2011). Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J. 6, 984–993. https://doi.org/10.1038/ismej.2011.157

  • Biddanda, B., D. Dila, A. Weinke, J. Mancuso, M. Villar-Argaiz, J. M. Medina-Sánchez, J. M. González-Olalla & P. Carrillo, 2021. Housekee** in the hydrosphere: microbial cooking, cleaning, and control under stress. Life 11(2): 152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braga, G. G., V. Becker, J. N. P. Oliveira, J. R. Mendonça Jr., A. F. M. Bezerra, L. M. Torres, A. M. Galvao & A. Mattos, 2015. Influence of extended drought on water quality in tropical reservoirs in a semiarid region. Acta Limnologica Brasiliensia 27: 15–23.

    Article  Google Scholar 

  • Bratbak, G., 1985. Bacterial biovolume and biomass estimations. Applied and Environmental Microbiology 49: 1488–1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briand, E., O. Pringault, S. Jacquet & J. P. Torréton, 2004. The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency. Limnology and Oceanography: Methods 2: 406–416.

    Google Scholar 

  • Brasil, J., J. L. Attayde, F. R. Vasconcelos, D. D. F. Dantas & V. Huszar, 2016. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770: 145–164.

    Article  CAS  Google Scholar 

  • Cole, J. J., N. F. Caraco, G. W. Kling & T. K. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J. J. & N. F. Caraco, 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography 43(4): 647–656.

    Article  CAS  Google Scholar 

  • Cole, J. J., S. R. Carpenter, M. L. Pace, M. C. V. Bogert, J. L. Kitchell & J. R. Hodgson, 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecology Letters 9: 558–568.

    Article  PubMed  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. Mcdowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105–121.

    Article  CAS  Google Scholar 

  • Costa, M. R. A., J. L. Attayde & V. Becker, 2016. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia 778: 75–89.

    Article  CAS  Google Scholar 

  • Del Giorgio, P. A. & J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.

    Article  Google Scholar 

  • Dodds, W. K. & J. J. Cole, 2007. Expanding the concept of trophic state in aquatic ecosystems: it’s not just the autotrophs. Aquatic Sciences 69: 427–439.

    Article  CAS  Google Scholar 

  • Duarte, C. M. & Y. T. Prairie, 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8: 862–870.

    Article  CAS  Google Scholar 

  • Faithfull, C. L., M. Huss, T. Vrede & A. K. Bergstrom, 2011. Bottom–up carbon subsidies and top–down predation pressure interact to affect aquatic food web structure. Oikos 120: 311–320.

    Article  CAS  Google Scholar 

  • Farjalla, V. F., C. C. Marinho, B. M. Faria, A. M. Amado, F. A. Esteves, R. L. Bozelli & D. Giroldo, 2009. Synergy of fresh and accumulated organic matter to bacterial growth. Microbial Ecology 57: 657–666.

    Article  CAS  PubMed  Google Scholar 

  • Fonte, E. L., A. M. Amado, F. Meirelles-Pereira, F. A. Esteves, et al., 2013. The combination of different carbon sources enhances bacterial growth efficiency in aquatic ecosystems. Microbial Ecology 66(4): 871–878.

    Article  CAS  PubMed  Google Scholar 

  • Gotelli, N. J. & A. M. Ellison, 2010. A Primer of Ecological Statistics, Sinauer Associates Inc, Sunderland, MA:

    Google Scholar 

  • Guillemette, F., S. L. Mccallister, et al., 2016. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria. The International Society for Microbial Ecology Journal. 10: 1373–1382.

    CAS  Google Scholar 

  • Hagen, E. M., M. E. McTammany, J. R. Webster & E. F. Benfield, 2010. Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient. Hydrobiologia 655(1): 61–77.

    Article  CAS  Google Scholar 

  • Hall, E. K., D. R. Schoolmaster Jr., A. M. Amado, E. G. Stets, J. T. Lennon, L. M. Domine & J. B. Cotner, 2015. Scaling relationships among drivers of aquatic respiration in temperate lakes: from the smallest to the largest freshwater ecosystems. Inland Waters 6: 1–10.

    Article  Google Scholar 

  • Hensgens, G., O. J. Lechtenfeld, F. Guillemette, H. Laudon & M. Berggren, 2021. Impacts of litter decay on organic leachate composition and reactivity. Biogeochemistry 154(1): 99–117.

    Article  CAS  Google Scholar 

  • Hobbie, J. E., R. J. Daley, et al., 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33: 1225–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, C., et al., 2002. Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts. Limnology and Oceanography 47: 1261–1267.

    Article  Google Scholar 

  • Jansson, M., J. Karlsson, et al., 2012. Carbon dioxide supersaturation promotes primary production in lakes. Ecology Letters 15: 527–532.

    Article  PubMed  Google Scholar 

  • Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Hydrobiologia 109: 445–454.

    Article  CAS  Google Scholar 

  • Jespersen, A. M. & K. Christoffersen, 1988. Measurements of bergchlorophyll a from phytoplankton using ethanol as extraction solvent. Archives of Hydrobiologia 109: 445–454.

  • Junger, P. C., D. F. Catombé, et al., 2019. Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs. Science of the Total Environment 664: 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, J., D. Lymer, et al., 2007. Differences in efficiency of carbon transfer from dissolved organic carbon to two zooplankton groups: an enclosure experiment in an oligotrophic lake. Aquatic Sciences 69: 108–114.

    Article  CAS  Google Scholar 

  • Kosten, S., S. van den Berg, R. Mendonça, J. R. Paranaíba, F. Roland, S. Sobek, J. Van Den Hoek & N. Barros, 2018. Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas. Inland Waters 8: 329–340.

    Article  CAS  Google Scholar 

  • Kritzberg, E. S., J. J. Cole, et al., 2005. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquatic Microbial Ecology 38: 103–111.

    Article  Google Scholar 

  • Marengo, J. A., T. Ambrizzi, R. P. Rocha, L. M. Alves, S. V. Cuadra, M. C. Valverde, R. R. Torres, et al., 2010. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Climate Dynamics 35: 1073–1097.

    Article  Google Scholar 

  • Marotta, H., C. M. Duarte, S. Sobek, et al., 2009. Large CO2 disequilibria in tropical lakes. Global Biogeochemical Cycles 23: 1–4.

    Article  CAS  Google Scholar 

  • Massana, R., J. M. Gasol, P. K. Bjornsen, N. Black-Burn, A. Hagstrom, S. Hietanen, B. H. Hygum, et al., 1997. Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Scientia Marina 61: 397–407.

    Google Scholar 

  • McCallister, S. L. & P.A., Del Giorgio, 2008. Direct measurement of the 13C signature of carbon respired by bacteria in lakes: Linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnology and Oceanography 53: 1204–1216.

    Article  CAS  Google Scholar 

  • Mendonça, J. R., Jr., A. M. Amado, L. O. Vidal, A. Mattos & V. Becker, 2018. Extreme droughts drive tropical semi-arid eutrophic reservoirs towards CO2 sub-saturation. Acta Limnologica Brasiliensia 30: 1–11.

    Google Scholar 

  • Pace, M. L., J. J. Cole, S. R. Carpenter, J. F. Kitchell, J. R. Hodgson, M. C. Van De Bogert, D. L. Bade, E. S. Kritzberg & D. Bastviken, 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature. 6971: 240–243.

    Article  CAS  Google Scholar 

  • Nobre, R., A. Caliman, C. Cabral, Fe. Araujo, J. Guérin, F. Dantas, L. Quesado, E. Venticinque, R. Guariento, A. Amado, P. Kelly, M. Vanni & L. Carneiro, 2020. Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters. Science of the Total Environment 716: 137044.

    Article  CAS  PubMed  Google Scholar 

  • Ozen, A., M. Sorf, C. Trochine, L. Liboriussen, M. Beklioglu, M. Sondergaard, T. L. Lauridsen, L. S. Johansson & E. Jeppesen, 2013. Long-term effects of warming and nutrients on microbes and other plankton in mesocosms. Freshwater Biology 58: 483–493.

    Article  CAS  Google Scholar 

  • Pace, M.L., & Orcutt, J.D. (1981). The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community1. Limnology and Oceanography, 26, 822–830. https://doi.org/10.4319/LO.1981.26.5.0822

  • Pacheco, F. S., et al., 2013. Eutrophication reverses whole-lake carbon budgets. Inland Waters 4: 41–48.

    Article  CAS  Google Scholar 

  • Paranaíba, J. R., G. Quadra, I. I. P. Josué, R. M. Almeida, R. Mendonça, S. J. Cardoso, J. Silva, S. Kosten, J. M. Campos, J. Almeida, R. L. Araújo, F. Roland & N. Barros, 2020. Sediment drying-rewetting cycles enhance greenhouse gas emissions, nutrient and trace element release, and promote water cytogenotoxicity. PLoS ONE 15: 1–21.

    Article  CAS  Google Scholar 

  • Pinheiro T.L., Amado, A.M., Paranaíba, J.R., Quadra, G.R., Barros, N. & V. Becker, 2021. Agricultural activity enhances CO2 and CH4 emissions after sediment rewetting in a tropical semiarid reservoir. Hydrobiologia. https://doi.org/10.1007/s10750-021-04714-7

  • Raymond, P. A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, H. Duur, M. Meybeck, et al., 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Rocha Junior, C. A. N., M. R. A. Costa, R. F. Menezes, et al., 2018. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnologica Brasiliensia 30: 1–10.

    Article  CAS  Google Scholar 

  • Roland, F., V. L. M. Huszar, V. F. Farjalla & A. Enrich-Prast, A. M Amado & J. P. H. B. Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology 72: 709–722.

    Article  CAS  Google Scholar 

  • Ruttner-Kolisko, A., 1997. Suggestions for biomass calculation of plankton rotifers. Archiv Fur Hidrobiologie Beiheft Ergebnisse Der Limnologie 8: 71–76.

    Google Scholar 

  • Sarmento, H., 2012. New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia 686: 1–14.

    Article  Google Scholar 

  • Scherwass, A., Y. Fischer & H. Arndt, 2005. Detritus as a potential food source for protozoans: utilization of fine particulate plant detritus by a heterotrophic flagellate, Chilomonas paramecium, and a ciliate, Tetrahymena pyriformes. Aquatic Ecology 39: 439–445.

    Article  CAS  Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein-content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.

    Article  CAS  Google Scholar 

  • Smith, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H – Leucine. Marine Microbial Food Webs 6: 107–114.

    Google Scholar 

  • Strome, D. J. & M. C. Miller, 1978. Photolitic changes in dissolved humic substances. Internaternationale Vereinigung Fur Teoretische Und Angevandte Limnologie: Verhandlungen 20: 1248–1254.

    Google Scholar 

  • They, N. H., A. M. Amado & J. B. Cotner, 2017. Redfield ratios tin inland waters: higher biological control of C:N:P ratios in tropical semi-arid high water residence time lakes. Frontiers in Microbiology 8: 1–13.

    Article  Google Scholar 

  • Tonetta, D., P. A. Staehr, B. Obrador, L. P. M. Brandão, L. S. Brighent & M. M. Petrucio, 2018. Effects of nutrients and organic matter inputs in the gases CO2 and O2: A mesocosm study in a tropical lake. Limnologica 69: 1–9.

    Article  CAS  Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70(2): 305–308.

    Article  Google Scholar 

  • Tranvik, L., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwike, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor & G. A Weyhenmeyer, 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.

    Article  CAS  Google Scholar 

  • Valderrama, J. C., 1981. The simultaneous analysis of total N and total P in natural waters. Marine Chemistry 10: 109–122.

    Article  CAS  Google Scholar 

  • Weiss, R. F., 1974. Carbon dioxide in water end seawater: the solubility IF a non-ideal gas. Marine Chemistry 2: 203–215.

    Article  CAS  Google Scholar 

  • Weisse, T. (2003). Pelagic Microbes - Protozoa and the Microbial Food Web. In: The Lakes Handbook, Volume 1 (eds. O’Sullivan, P.E. & Reynolds, C.S.). Blackwell Science Ltd, Malden, MA, USA, pp. 417–460.

  • Winslow, L. A., 2014. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Frontiers in Ecology and the Environment 12: 5–14.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rodrigo Carvalho and Leonardo Versieux for sampling and identification of the plant species used as detritus. The authors thank to MSc. Bruna Vargas for language review and to Dr. Vinicius Farjalla, Dr. Adriano Caliman and Dr. José Reinaldo Paranaíba for comments on the manuscript.

Funding

This work was founded by Foundation for Science (IFS) for financial support (Proc. # AA20514) and CAPES for C.G. Moura and L.M. Fonseca Scholarships. A. M. Amado and F. Roland were supported by the National Council for Scientific and Technological Development – CNPq (Research Productivity Scholarship A.M.A Process # 310033/2017-9 and # 312772/2020-3; F.R. Process # 311.892/2017-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Megali Amado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Sidinei Magela Thomaz

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen / Advances in the Ecology of Shallow Lakes

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2150 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura, C.G.B., Rocha, E., de Attayde, J.L. et al. Fresh terrestrial detritus fuels both heterotrophic and autotrophic activities in the planktonic food web of a tropical reservoir: a mesocosm study. Hydrobiologia 849, 3931–3946 (2022). https://doi.org/10.1007/s10750-021-04754-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04754-z

Keywords

Navigation