Log in

Extensive Carbon Contribution of Inundated Terrestrial Plants to Zooplankton Biomass in a Eutrophic Lake

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Organic carbon derived from terrestrial plants contributes to aquatic consumers, e.g., zooplankton in lakes. The degree of the contribution depends on the availability of terrestrial organic carbon in lake organic pool and the transfer efficiency of the carbon. Terrestrial organic carbon is poor-quality food for zooplankton with a mismatch of nutrition content and was incorporated to zooplankton with much lower efficiency than phytoplankton. Contributions of terrestrial carbon to zooplankton generally decrease with an increase in phytoplankton production, indicating a preferential incorporation of phytoplankton in previous investigations. However, in eutrophic lakes, the dominating cyanobacteria were of poor quality and incorporated to consumers inefficiently too. In that case, zooplankton in eutrophic wetlands, where cyanobacteria dominate the phytoplankton production and massive terrestrial plants are inundated, may not preferentially incorporate poor food-quality phytoplankton resource to their biomass. Therefore, we hypothesize that carbon contributions of terrestrial vegetation to zooplankton and to lake particulate organic pool should be similar in such aquatic ecosystems. We tested this hypothesis by sampling zooplankton and carbon sources in Ming Lake (**an University Campus, southern China) which was overgrown by terrestrial plants after drying and re-flooded. After 60 days of observations at weekly (or biweekly) intervals, applying stable carbon (13C), nitrogen (15 N), and hydrogen (2H) isotopic analysis and a stable isotope mixing model, we estimated the occurrence of extensive carbon contribution (≥ 50%) of flooded terrestrial plants to cladocerans and copepods. Contribution of inundated terrestrial plants to cladocerans was similar to that to lake particulate organic pool. Thus, our study quantified the role of terrestrial carbon in eutrophic wetlands, enhancing our understanding of cross-ecosystem interactions in food webs with an emphasis on the resource quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Weyhenmeyer GA, Müller RA, Norman M, Tranvik LJ (2016) Sensitivity of freshwaters to browning in response to future climate change. Clim Change 134:225–239. https://doi.org/10.1007/s10584-015-1514-z

    Article  Google Scholar 

  2. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207. https://doi.org/10.1016/j.tree.2008.11.009

    Article  PubMed  Google Scholar 

  3. Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243. https://doi.org/10.1038/nature02227

    Article  CAS  PubMed  Google Scholar 

  4. Marcarelli AM, Baxter CV, Mineau MM, Hall RO (2011) Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–1225. https://doi.org/10.1890/10-2240.1

    Article  PubMed  Google Scholar 

  5. Grosbois G, Vachon D, Del Giorgio PA, Rautio M (2020) Efficiency of crustacean zooplankton in transferring allochthonous carbon in a boreal lake. Ecology 101:e03013. https://doi.org/10.1002/ecy.3013

    Article  PubMed  Google Scholar 

  6. van der Lee GH, Vonk JA, Verdonschot RC, Kraak MH, Verdonschot PF, Huisman J (2021) Eutrophication induces shifts in the trophic position of invertebrates in aquatic food webs. Ecology 102:e03275. https://doi.org/10.1002/ecy.3275

    Article  PubMed  Google Scholar 

  7. Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Kritzberg ES (2005) Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–2750. https://doi.org/10.1890/04-1282

    Article  Google Scholar 

  8. Tanentzap AJ, Kielstra BW, Wilkinson GM, Berggren M, Craig N, Del Giorgio PA, Grey J, Gunn JM, Jones SE, Karlsson J, Solomon CT, Pace ML (2017) Terrestrial support of lake food webs: Synthesis reveals controls over cross-ecosystem resource use. Sci Adv 3:e1601765. https://doi.org/10.1126/sciadv.1601765

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pace ML, Carpenter SR, Cole JJ, Coloso JJ (2007) Does terrestrial organic carbon subsidize the planktonic food web in a clear-water lake? Limnol Oceanogr 52:2177–2189. https://doi.org/10.4319/lo.2007.52.5.2177

    Article  CAS  Google Scholar 

  10. Francis TB, Schindler DE, Holtgrieve GW, Larson ER, Scheuerell MD, Semmens BX, Ward EJ (2011) Habitat structure determines resource use by zooplankton in temperate lakes. Ecol Lett 14:364–372. https://doi.org/10.1111/j.1461-0248.2011.01597.x

    Article  PubMed  Google Scholar 

  11. Vlah MJ, Holtgrieve GW, Sadro S (2018) Low levels of allochthony in consumers across three high-elevation lake types. Ecosystems 21:1101–1117. https://doi.org/10.1007/s10021-017-0206-0

    Article  CAS  Google Scholar 

  12. Batt RD, Carpenter SR, Cole JJ, Pace ML, Cline TJ, Johnson RA, Seekell DA (2012) Resources supporting the food web of a naturally productive lake. Limnol Oceanogr 57:1443–1452. https://doi.org/10.4319/lo.2012.57.5.1443

    Article  CAS  Google Scholar 

  13. Cole JJ, Carpenter SR, Kitchell J, Pace ML, Solomon CT, Weidel B (2011) Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc Natl Acad Sci 108:1975–1980. https://doi.org/10.1073/pnas.1012807108

    Article  PubMed  PubMed Central  Google Scholar 

  14. Karlsson J, Berggren M, Ask J, Byström P, Jonsson A, Laudon H, Jansson M (2012) Terrestrial organic matter support of lake food webs: Evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol Oceanogr 57:1042–1048. https://doi.org/10.4319/lo.2012.57.4.1042

    Article  CAS  Google Scholar 

  15. Zeug SC, Winemiller KO (2008) Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89:1733–1743. https://doi.org/10.1890/07-1064.1

    Article  PubMed  Google Scholar 

  16. **ram MA, Collier KJ, Hamilton DP, Hicks BJ, David BO (2014) Spatial and temporal patterns of carbon flow in a temperate, large river food web. Hydrobiologia 729:107–131. https://doi.org/10.1007/s10750-012-1408-2

    Article  CAS  Google Scholar 

  17. Marczak LB, Thompson RM, Richardson JS (2007) Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88:140–148. https://doi.org/10.2307/27651075

    Article  PubMed  Google Scholar 

  18. Zigah PK, Minor EC, Werne JP, Leigh McCallister S (2012) An isotopic (Δ14C, δ13C, and δ15N) investigation of the composition of particulate organic matter and zooplankton food sources in Lake Superior and across a size-gradient of aquatic systems. Biogeosciences 9:3663–3678. https://doi.org/10.5194/bg-9-3663-2012

    Article  CAS  Google Scholar 

  19. Karlsson J, Lymer D, Vrede KM (2007) Differences in efficiency of carbon transfer from dissolved organic carbon to two zooplankton groups: an enclosure experiment in an oligotrophic lake. Aquat Sci 69:108–114. https://doi.org/10.1007/s00027-007-0913-2

    Article  CAS  Google Scholar 

  20. Berggren M, Ziegler SE, St-Gelais NF, Beisner BE, Del Giorgio PA (2014) Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95:1947–1959. https://doi.org/10.1890/13-0615.1

    Article  PubMed  Google Scholar 

  21. Wilkinson GM, Carpenter SR, Cole JJ, Pace ML, Yang C (2013) Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshw Biol 58:2037–2049. https://doi.org/10.1111/fwb.12189

    Article  Google Scholar 

  22. Tanentzap AJ, Szkokan-Emilson EJ, Kielstra BW, Arts MT, Yan ND, Gunn JM (2014) Forests fuel fish growth in freshwater deltas. Nat Commun 5:1–9. https://doi.org/10.1038/ncomms5077

    Article  CAS  Google Scholar 

  23. Grey J, Jones RI, Sleep D (2000) Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 123:232–240. https://doi.org/10.1007/s004420051010

    Article  CAS  PubMed  Google Scholar 

  24. Ruess L, Müller-Navarra DC (2019) Essential biomolecules in food webs. Front Ecol Evol 7:269. https://doi.org/10.3389/fevo.2019.00269

    Article  Google Scholar 

  25. Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77. https://doi.org/10.1038/47469

    Article  PubMed  Google Scholar 

  26. Burian AJ, Nielse M, Winder M (2020) Food quantity–quality interactions and their impact on consumer behavior and trophic transfer. Ecol Monogr 90:e01395. https://doi.org/10.1002/ecm.1395

    Article  Google Scholar 

  27. Brett MT, Kainz MJ, Taipale SJ, Seshan H (2009) Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc Natl Acad Sci 106:21197–21201. https://doi.org/10.1073/pnas.0904129106

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lukas M, Wacker A (2014) Daphnia’s dilemma: adjustment of carbon budgets in the face of food and cholesterol limitation. J Exp Biol 217:1079–1086. https://doi.org/10.1242/jeb.094151

    Article  PubMed  Google Scholar 

  29. Taipale SJ, Galloway AW, Aalto SL, Kahilainen KK, Strandberg U, Kankaala P (2016) Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency. Sci Rep 6:1–15. https://doi.org/10.1038/srep30897

    Article  CAS  Google Scholar 

  30. Tang Y, Yang X, Xu R, Zhang X, Liu Z, Zhang Y, Dumont HJ (2019) Heterotrophic microbes upgrade food value of a terrestrial carbon resource for Daphnia magna. Limnol Oceanogr 64:474–482. https://doi.org/10.1002/lno.11052

    Article  Google Scholar 

  31. Su L, ** Z, **e L, Tang Y, Liu Z, Zhong P, Su Y, Lin Q (2021) Carbon transfer from the submerged macrophyte Hydrilla verticillata to zooplankton: a 13C-labeled mesocosm study. Hydrobiologia 848:4179–4188. https://doi.org/10.1007/s10750-021-04645-3

    Article  CAS  Google Scholar 

  32. Mcmeans BC, Koussoroplis AM, Arts MT, Kainz MJ (2015) Terrestrial dissolved organic matter supports growth and reproduction of Daphnia magna when algae are limiting. J Plankton Res 37:1201–1209. https://doi.org/10.1034/j.1600-0706.2003.12098.x

    Article  CAS  Google Scholar 

  33. Brett MT, Bunn SE, Chandra S, Galloway AWE, Guo F, Kainz MJ, Kankaala P, Lau DCP, Moulton TP, Power ME, Rasmussen JB, Taipale SJ, Thorp JH, Wehr JD (2017) How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshw Biol 62:833–853. https://doi.org/10.1111/fwb.12909

    Article  CAS  Google Scholar 

  34. Ger KA, Hansson LA, Lürling M (2014) Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshw Biol 59:1783–1798. https://doi.org/10.1111/fwb.12393

    Article  Google Scholar 

  35. Persson J, Brett MT, Vrede T, Ravet JL (2007) Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116:1152–1163. https://doi.org/10.1111/j.0030-1299.2007.15639.x

    Article  Google Scholar 

  36. Junk WJ (1997) General aspects of floodplain ecology with special reference to Amazonian floodplains. In: Junk WJ (ed) The central Amazon floodplain. Springer, Berlin, pp 3–20

    Chapter  Google Scholar 

  37. Robertson AI, Bunn SE, Walker BPI, KF, (1999) Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Mar Freshwater Res 50:813–829. https://doi.org/10.1071/MF99112

    Article  CAS  Google Scholar 

  38. Masclaux H, Bec A, Kagami M, Perga ME, Sime-Ngando T, Desvilettes C, Bourdier G (2011) Food quality of anemophilous plant pollen for zooplankton. Limnol Oceanogr 56:939–946. https://doi.org/10.4319/lo.2011.56.3.0939

    Article  CAS  Google Scholar 

  39. Ruiz-Lopez N, Usher S, Sayanova OV, Napier JA, Haslam RP (2015) Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biot 99:143–154. https://doi.org/10.1007/s00253-014-6217-2

    Article  CAS  Google Scholar 

  40. Zhang ZS, Huang XF (1991) Research methods of freshwater plankton. Science Press, Bei**g

    Google Scholar 

  41. Solomon CT, Cole JJ, Doucett RR, Pace ML, Preston ND, Smith LE, Weidel BC (2009) The influence of environmental water on the hydrogen stable isotope ratio in aquatic consumers. Oecologia 161:313–324. https://doi.org/10.2307/40310203

    Article  PubMed  Google Scholar 

  42. Matthews B, Mazumder A (2003) Compositional and interlake variability of zooplankton affect baseline stable isotope signatures. Limnol Oceanogr 48:1977–1987. https://doi.org/10.4319/lo.2003.48.5.1977

    Article  CAS  Google Scholar 

  43. Wetzel RG (2001) Land-water interfaces: attached microorganisms, littoral algae, and zooplankton. In: Wetzel RG (ed) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San Diego, pp 577–623

    Chapter  Google Scholar 

  44. Wang S, **e P, Wu S, Wu A (2007) Crustacean zooplankton distribution patterns and their biomass as related to trophic indicators of 29 shallow subtropical lakes. Limnologica 37:242–249. https://doi.org/10.1016/j.limno.2007.02.002

    Article  Google Scholar 

  45. Koehler B, Von Wachenfeldt E, Kothawala D, Tranvik LJ (2012) Reactivity continuum of dissolved organic carbon decomposition in lake water. J Geophys Res: Biogeosci 117:G01024. https://doi.org/10.1029/2011JG001793

    Article  CAS  Google Scholar 

  46. Barnett AJ, Finlay K, Beisner BE (2007) Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw Biol 52:796–813. https://doi.org/10.1111/fwb.12177

    Article  Google Scholar 

  47. Rao TR, Kumar R (2002) Patterns of prey selectivity in the cyclopoid copepod Mesocyclops thermocyclopoides. Aquat Ecol 36:411–424. https://doi.org/10.1023/A:1016509016852

    Article  Google Scholar 

  48. Plum N (2005) Terrestrial invertebrates in flooded grassland: a literature review. Wetlands 25:721–737. https://doi.org/10.1672/0277-5212(2005)025[0721:TIIFGA]2.0.CO;2

    Article  Google Scholar 

  49. Ruiz T, Koussoroplis AM, Danger M, Aguer JP, Bec A (2021) Quantifying the energetic cost of food quality constraints on resting metabolism to integrate nutritional and metabolic ecology. Ecol Lett 24:2339–2349. https://doi.org/10.1111/ele.13855

    Article  PubMed  Google Scholar 

  50. Koussoroplis AM, Kainz MJ, Striebel M (2013) Fatty acid retention under temporally heterogeneous dietary intake in a cladoceran. Oikos 122:1017–1026. https://doi.org/10.1111/j.1600-0706.2012.20759.x

    Article  CAS  Google Scholar 

  51. Tang Y, Zhou D, Su L, Liu Z, Zhang X, Dumont HJ (2021) Vallisneria natans detritus supports Daphnia magna somatic growth and reproduction under addition of periphyton. Aquat Ecol 55:579–588. https://doi.org/10.1007/s10452-021-09846-5

    Article  CAS  Google Scholar 

  52. Bec A, Martin-Creuzburg D, Elert EV (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707. https://doi.org/10.4319/lo.2006.51.4.1699

    Article  Google Scholar 

  53. **ng P, Guo L, Tian W, Wu QL (2011) Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms. ISME J 5:792–800. https://doi.org/10.1038/ismej.2010.176

    Article  CAS  PubMed  Google Scholar 

  54. Klein Breteler WCM, Schogt N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar Biol 135:191–198. https://doi.org/10.1007/s002270050616

    Article  Google Scholar 

  55. Roach KA, Winemiller KO, Davis SE III (2014) Autochthonous production in shallow littoral zones of five floodplain rivers: effects of flow, turbidity and nutrients. Freshw Biol 59:1278–1293. https://doi.org/10.1111/fwb.12347

    Article  CAS  Google Scholar 

  56. Cazzanelli M, Soria-Barreto M, Castillo MM, Rodiles-Hernández R (2021) Seasonal variations in food web dynamics of floodplain lakes with contrasting hydrological connectivity in the Southern Gulf of Mexico. Hydrobiologia 848:773–797. https://doi.org/10.1007/s10750-020-04468-8

    Article  Google Scholar 

  57. Sarkar SD, Sarkar UK, Lianthuamluaia L, Ghosh BD, Roy K, Mishal P, Das BK (2020) Pattern of the state of eutrophication in the floodplain wetlands of eastern India in context of climate change: a comparative evaluation of 27 wetlands. Environ Monit Assess 192:1–12. https://doi.org/10.1007/s10661-020-8114-8

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the work of numerous participants who collected and analyzed samples during the period of experiment.

Funding

National Natural Science Foundation of China (No. 32071566) and Natural Science Foundation of Guangdong Province (No. 2022A1515011074) supported this study financially.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Zhengwen Liu, **ufeng Zhang and Yali Tang. Methodology: Sirui Wang, Daiying Zhou, **aotong **, Qiuqi Lin, **ufeng Zhang, Henri J. Dumont, and Yali Tang. Writing–original draft preparation: Yali Tang. Writing–review and editing: Yali Tang, Zhengwen Liu, **ufeng Zhang, Daiying Zhou, **aotong **, Sirui Wang, Qiuqi Lin and Henri J. Dumont.

Corresponding authors

Correspondence to Yali Tang, Zhengwen Liu or **ufeng Zhang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Wang, S., **, X. et al. Extensive Carbon Contribution of Inundated Terrestrial Plants to Zooplankton Biomass in a Eutrophic Lake. Microb Ecol 86, 163–173 (2023). https://doi.org/10.1007/s00248-022-02089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02089-3

Keywords

Navigation