Log in

Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes

  • SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Droughts are large-scale perturbations that affect freshwater ecosystems worldwide. A water level reduction caused by drought is an important driving factor of phytoplankton dynamics. It has been suggested that a water level reduction alters the light and mixing regime and increases nutrient concentrations and phytoplankton biomass favoring cyanobacterial blooms. We took advantage of two exceptionally dry years in the Brazilian semi-arid region to investigate the effects of the water level reduction on the water quality and phytoplankton communities of two shallow man-made lakes. In both lakes, the water level was reduced by half, while the water turbidity, conductivity, and nutrient concentrations increased. In the deeper lake, the phytoplankton biomass increased and was dominated by a cyanobacteria group as expected, but it decreased in the shallower lake and was dominated by mixotrophic flagellate groups. This was because of sediment resuspension by wind and fish facilitated by a water level reduction and increased the water turbidity more strongly in the shallower than in the deeper lake. Therefore, a water level reduction caused by a drought may either increase or decrease the phytoplankton biomass and cyanobacteria dominance in tropical shallow lakes depending on the lake depth and the concentration of inorganic suspended sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2008. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624: 45–60.

    Article  Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington DC.

    Google Scholar 

  • Bates, B.C., Z.W. Kundzewicz, S. Wu & J.P. Palutikof, 2008. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva

  • Becker, V., L. Caputo, J. Ordóñez, J. Marcé, J. Armengol, L. O. Crossetti & V. L. M. Huszar, 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research 44: 3345–3354.

    Article  CAS  PubMed  Google Scholar 

  • Bonilla, S. L., M. C. S. Aubriot, M. Soares, A. González-Piana, V. L. M. Fabre, M. Huszar, D. Lurling, J. Padisák Antoniades & C. Kruk, 2012. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? Microbiology Ecology 79: 594–607.

    Article  CAS  PubMed  Google Scholar 

  • Bouvy, M., R. Molica, S. de Oliveira, M. Marinho & B. Beker, 1999. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquatic Microbial Ecology 20: 285–297.

    Article  Google Scholar 

  • Bouvy, M., S. M. Nascimento, R. J. R. Molica, A. Ferreira, V. Huszar & S. M. F. O. Azevedo, 2003. Limnological features in Tapacurá reservoir (northeast Brazil) during a severe drought. Hydrobiologia 493: 115–130.

    Article  CAS  Google Scholar 

  • Cole, G. A., 1994. Textbook of Limnology. Waveland Press, Illinois: 412.

    Google Scholar 

  • Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506–509: 23–27.

    Article  Google Scholar 

  • Crossetti, L. O., V. Becker, L. S. Cardoso, L. R. Rodrigues, L. S. Costa & D. Motta-Marques, 2013. Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica - Ecology and Management of Inland Waters 43: 157–163.

    Article  Google Scholar 

  • Dantas, Ê. W., M. D. C. Bittencourt-Oliveira & A. D. N. Moura, 2012. Dynamics of phytoplankton associations in three reservoirs in northeastern Brazil assessed using Reynolds’ theory. Limnologica- Ecology and Management of Inland Waters 42: 72–80.

    Article  CAS  Google Scholar 

  • De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. V. Donk, M. Winder & M. Lürling, 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.

    Article  Google Scholar 

  • Empresa Brasileira de Pesquisa em Agropecuária, 1971. Levantamento exploratório – Reconhecimento de solos do Estado do Rio Grande do Norte. Available http://www.uep.cnps.embrapa.br/solos/index.php?link=rn.

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Huszar, V., C. Kruk & N. Caraco, 2003. Steady-state assemblages of phytoplankton in four temperate lakes (NE USA). Hydrobiologia 502: 97–109.

    Article  Google Scholar 

  • Ibanez, M. D. S. R., 1998. Phytoplankton composition and abundance of a central Amazonian floodplain lake. Hydrobiologia 362: 79–83.

    Article  Google Scholar 

  • IPCC Climate Change, 2007. Impacts, Adaptation an Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernamental Painel on Climate Change. Cambridge University Press, Cambridge, UK.

  • Jensen, P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.

    Article  Google Scholar 

  • Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioglu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.

    Article  Google Scholar 

  • Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Hydrobiologia 109: 445–454.

    CAS  Google Scholar 

  • Jones, R. I., 2000. Mixotrophy in planktonic protists: an overview. Freshwater Biology 45: 219–226.

    Article  Google Scholar 

  • Katechakis, A., T. Haseneder, R. Kling & H. Stibor, 2005. Mixotrophic versus photoautotrophic specialist algae as food for zooplankton: The light: nutrient hypothesis might not hold for mixotrophs. Limnology and Oceanography 50: 1290–1299.

    Article  CAS  Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf & F. Rubel, 2006. World map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259–263.

    Article  Google Scholar 

  • Kruk, C., N. Mazzeo, G. Lacerot & C. S. Reynolds, 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research 24: 901–912.

    Article  Google Scholar 

  • Kokociński, M., K. Stefaniak, J. Mankiewicz-Boczek, K. Izydorczyk & J. Soininen, 2010. The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). European Journal of Phycology 45: 365–374.

    Article  Google Scholar 

  • Kutner, M. H.; C. J. Nachtsheim & J. Neter, 2004. Applied Linear Regression Models (4th ed.). McGraw-Hill Irwin.

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal num-ber and the statistical basis of estimating by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Marengo, J. A., T. Ambrizzi, R. P. da Rocha, L. M. Alves, S. V. Cuadra, M. C. Valverde, R. R. Torres, D. C. Santos & S. E. T. Ferraz, 2010. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Climate Dynamics 35: 1073–1097.

    Article  Google Scholar 

  • Mc Cune, B. & M.J. Mefford, 2011. PC-ORD. Multivariate analysis of ecological data. version 6.0. MjM Software Design, Oregon.

  • McKee, T.B., N.J. Doesken & J. Kleist, 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Boston, MA: 179–183.

  • Medeiros, L. C., A. Mattos, M. Lurling & V. Becker, 2015. Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake. Aquatic Ecology 49: 293–307.

    Article  CAS  Google Scholar 

  • Mishra, A. K. & V. P. Singh, 2010. A review of drought concepts. Journal of Hydrology 391: 202–216.

    Article  Google Scholar 

  • Moss, B., S. Kosten, M. Meerhoff, R. W. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. Liu, L. de Meester, H. Paerl & M. Sheffer, 2011. Allied attack: climate change and eutrophication. Inland Waters 1: 101–105.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2000. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 438: 65–74.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.

    Article  Google Scholar 

  • Naselli-Flores, L., R. Barone, I. Chorus & R. Kurmayer, 2007. Toxic cyanobacterial blooms in reservoirs under a semiarid Mediterranean climate: the magnification of a problem. Environmental Toxicology 22: 399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 143: 277–283.

    Article  Google Scholar 

  • Padisák, J., 1992. Spatial and temporal scales in phytoplankton ecology. Abstracta Botanica 16: 15–23.

    Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H. W. & T. G. Otten, 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology 65: 995–1010.

    Article  CAS  PubMed  Google Scholar 

  • Persson, A. & J. S. M. Svensson, 2006. Effects of benthivorous fish on biogeochemical processes in lake sediments. Freshwater Biology 51: 1298–1309.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1989. Physical determinants of phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer Verlag, Berlin: 9–56.

    Chapter  Google Scholar 

  • Reynolds, C. S., 1990. Temporal scales of variability in pelagic environments and the response of phytoplankton. Freshwater Biology 23: 25–53.

    Article  Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369(370): 11–26.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation). Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Nasseli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Roland, F., V. L. M. Huszar, V. F. Farjalla, A. Enrich-Prast, A. M. Amado & J. P. H. B. Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology 72: 709–722.

    Article  CAS  Google Scholar 

  • Ross, T. & N. Lott, 2003. A climatology of 1980–2003 extreme weather and climate events. US. National Environmental Satellite Data and Information Service. National Climatic Data Center, Asheville, North Carolina

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2014. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Article  Google Scholar 

  • Sarmento, H., A. M. Amado & J. P. Descy, 2013. Climate change in tropical fresh waters (comment on the paper ‘Plankton dynamics under different climatic conditions in space and time’by de Senerpont Domis et al., 2013). Freshwater Biology 58: 2208–2210.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.

    Google Scholar 

  • Schindler, D. E., S. R. Carpenter, K. L. Cottingham, X. He, J. R. Hodgson, J. F. Kitchell & P. A. Soranno, 1996. Foodweb structure and littoral zone coupling to pelagic trophic cascades. In Polis, G. A. & K. O. Winemiller (eds), Food Webs: Integration of Pattern and Dynamics. Chapman & Hall, New York: 96–105.

    Chapter  Google Scholar 

  • Shannon, C. E. & W. Weaver, 1963. The mathematical theory of communication. University Press, Urbana, Illinois.

    Google Scholar 

  • Sinistro, R., I. Izaguirre & V. Asikian, 2006. Experimental study on the microbial plankton community in a South American wetland (Lower Parana River Basin) and the effect of the light deficiency due to the floating macrophytes. Journal of Plankton Research 28: 753–768.

    Article  CAS  Google Scholar 

  • Soares, M. C. S., M. I. A. Rocha, M. M. Marinho, S. M. F. O. Azevedo, C. W. C. Branco & V. L. M. Huszar, 2009. Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquatic Microbial Ecology 57: 137–149.

    Article  Google Scholar 

  • Ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.

    Article  Google Scholar 

  • Uehlinger, V., 1964. Étude statistique des méthodes de dénobrement planctonique. Archive Science 17: 121–123.

    Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommung der quantitativen phytoplankton methodik. Mitteilungen der international. Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and phosphorus in natural waters. Marine Chemistry 10: 109–122.

    Article  CAS  Google Scholar 

  • Vanni, M. J., 1996. Nutrient transport and recycling by consumers in lake food webs: implications for algal communities. In Polis, G. A. & K. O. Winemiller (eds), Food Webs: Integration of Pattern and Dynamics. Chapman & Hall, NY: 81–95.

    Chapter  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. WB Saunders Co., Philadelphia.

    Book  Google Scholar 

  • Zohary, T., J. Padisák & L. Naselli-Flores, 2010. Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light. Hydrobiologia 639: 261–269.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by CNPq (Brazilian National Research Council) and ICMBio (Institute Chico Mendes of Biodiversity Conservation) process No. 372170/2014-5. Thanks go to CAPES (Coordination of Improvement of Higher Education Personnel) for granting a master’s scholarship. We wish to thank the employees of the Ecological Station of Seridó (ESEC-RN) for their structure and field support; Leonardo Rosa for creating the localization map; Pablo Rubim, Gabriela Moura, Jurandir Mendonça-Júnior, Fabiana Araújo, Maria Marcolina Cardoso, Leonardo Teixeira, Danyhelton Dantas, Edson Santana, and Viviane Medeiros for their fieldwork, sampling, and laboratory analysis and Rosemberg Menezes for hel** with the multicollinearity statistics analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Rodrigues Amaral da Costa.

Additional information

Guest editors: M. Beklioğlu, M. Meerhoff, T. A. Davidson, K. A. Ger, K. E. Havens & B. Moss / Shallow Lakes in a Fast Changing World

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, M.R.A., Attayde, J.L. & Becker, V. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia 778, 75–89 (2016). https://doi.org/10.1007/s10750-015-2593-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2593-6

Keywords

Navigation