Log in

Fine map** and comparative genomics integration of two quantitative trait loci controlling resistance to powdery mildew in a Spanish barley landrace

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The intervals containing two major quantitative trait loci (QTL) from a Spanish barley landrace conferring broad spectrum resistance to Blumeria graminis were subjected to marker saturation. First, all the available information on recently developed marker resources for barley was exploited. Then, a comparative genomic analysis of the QTL regions with other sequenced grass model species was performed. As a result of the first step, 32 new markers were added to the previous map and new flanking markers closer to both QTL were identified. Next, syntenic integration revealed that the barley target regions showed homology with regions on chromosome 6 of rice (Oryza sativa), chromosome 10 of Sorghum bicolor and chromosome 1 of Brachypodium distachyon. A nested insertion of ancestral syntenic blocks on Brachypodium chromosome 1 was confirmed. Based on sequence information of the most likely candidate orthologous genes, 23 new barley unigene-derived markers were developed and mapped within the barley target regions. The assessment of colinearity revealed an inversion on chromosome 7HL of barley compared to the other three grass species, and nearly perfect colinearity on chromosome 7HS. This two-step marker enrichment allowed for the refinement of the two QTL into much smaller intervals. Inspection of all predicted proteins for the barley unigenes identified within the QTL intervals did not reveal the presence of resistance gene candidates. This study demonstrates the usefulness of sequenced genomes for fine map** and paves the way for the use of these two loci in barley breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier E, Plomion C, Cooke R, Feuillet C, Salse J (2010) Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci 15:479–487

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller LipmanDJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional map** in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  PubMed  CAS  Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:119–125

    Article  PubMed  CAS  Google Scholar 

  • Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli D, Collins NC, Tacconi G, Dellaglio E, Brueggeman R, Kleinhofs A, Stanca AM, Valè G (2004) High resolution genetic map** of the leaf stripe resistance gene Rdg2a in barley. Theor Appl Genet 108:1401–1408

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Brule-Babel A, Baumann U, Collins N (2009a) Structure-function analysis of the barley genome: the gene-rich region of chromosome 2HL. Funct Integr Genomics 9:67–79

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Baumann U, Fincher GB, Collins NC (2009b) Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Funct Integr Genomics 9:243–254

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L et al (2009) Development and implementation of high-throughput SNP genoty** in barley. BMC Genomics 10:582

    Article  PubMed  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szűcs P, Too**da T, Vales MI, Wolfe RI (2001) Molecular map** of the Oregon Wolfe barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    Article  CAS  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

    Article  PubMed  CAS  Google Scholar 

  • Drader T, Kleinhofs A (2010) A synteny map and disease resistance gene comparison between barley and the model monocot Brachypodium distachyon. Genome 53:406–417

    Article  PubMed  CAS  Google Scholar 

  • Drader T, Johnson K, Brueggeman R, Kudrna D, Kleinhofs A (2009) Genetic and physical map** of a high recombination region on chromosome 7H(1) in barley. Theor Appl Genet 118:811–820

    Article  PubMed  CAS  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.7. Available from http://www.geneious.com/

  • Faricelli ME, Valarik M, Dubcovsky J (2010) Control of flowering time and spike development in cereals: the earliness per se Eps-Am1 region in wheat, rice, and Brachypodium. Funct Integr Genomics 10:293–306

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Zhang Z, Fellers JP, Gill BS (2008) Micro-colinearity between rice, Brachypodium and Triticum monococcum at the wheat domestication locus Q. Funct Integr Genomics 8:149–164

    Article  PubMed  CAS  Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The flowering locus T-like gene family in barley Hordeum vulgare. Genetics 176:599–609

    Article  PubMed  CAS  Google Scholar 

  • Friedt W, Pellio B, Werner K, Weiskorn C, Krämer M, Ordon F (2003) Strategies for breeding of durable disease resistance in cereals. Prog Botany 64:138–167

    Article  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map in barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Guo WJ, Li P, Ling J, Ye SP (2007) Significant comparative characteristics between orphan and nonorphan genes in the rice (Oryza sativa L.) Genome. Comp Funct Genomics 21676. doi:10.1155/2007/21676

  • Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine map**, physical map** and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507–1522

    Article  PubMed  CAS  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One 5:e10065

    Article  PubMed  Google Scholar 

  • Igartua E, Gracia MP, Lasa JM, Medina B, Molina-Cano JL, Montoya JL, Romagosa I (1998) The Spanish barley core collection. Genet Resour Crop Ev 45:475–481

    Article  Google Scholar 

  • International Brachypodium Initiative (2010) Genome sequencing and analysis of the grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Jansen R, Stam P (1994) High resolution of quantitative traits into multiple loci via interval map**. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ et al (1993) A molecular, isozyme and morphological map of barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine map** of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Faris JD, Edwards MC, Friesen TL (2010) Development of Expressed Sequence Tag (EST)–based markers for genomic analysis of a barley 6H Region harboring multiple net form net blotch resistance genes. Plant Genome 3:41–52

    Article  CAS  Google Scholar 

  • Mammadov JA, Steffenson BJ, Saghai-Maroof MA (2005) High-resolution map** of the barley leaf rust resistance gene Rph5 using barley expressed sequence tags (ESTs) and synteny with rice. Theor Appl Genet 111:1651–1660

    Article  PubMed  CAS  Google Scholar 

  • Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  PubMed  CAS  Google Scholar 

  • Mayer KFX, Taudien S, Martis M, Imková H, Suchánková P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Doleel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505

    Article  PubMed  CAS  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  PubMed  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    Article  CAS  Google Scholar 

  • Merkeev IV, Mironov AA (2008) Orphan genes: function, evolution, and composition. J Mol Biol 42:143–149

    CAS  Google Scholar 

  • Opanowicz M, Vain P, Draper J, Parker D, Doonan JH (2008) Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci 13:172–177

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, Kopahnke D, Graner A (2004) An integrated approach for comparative map** in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 4:74–83

    Article  PubMed  CAS  Google Scholar 

  • Perovic D, Tiffin P, Douchkov D, Bäumlein H, Graner A (2007) An integrated approach for comparative analysis of multigene families with special reference to the barley nicotianamine synthase genes. Funct Integr Genomics 2:169–179

    Article  Google Scholar 

  • Perovic D, Förster J, Devaux P, Hariri D, Guilleroux M, Kanyuka K, Lyons R, Weyen J, Feuerhelm D, Kastirr U, Sourdille P, Röder M, Ordon F (2009) Map** and diagnostic marker development for soil-borne cereal mosaic virus resistance in bread wheat. Mol Breed 23:641–653

    Article  CAS  Google Scholar 

  • Pourkheirandish M, Wicker T, Stein N, Fujimura T, Komatsuda T (2007) Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition. Theor Appl Genet 114:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R (2011) Intermedium-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene Teosinte branched. Nat Genet 43:169–172

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson J, Wanamaker S, Walia H, Rodriguez E, Hedley P, Liu H, Morris J, Close T, Marshall D, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Takeda K (2009) An application of high-throughput SNP genoty** for barley genome map** and characterization of recombinant chromosome substitution lines. Theor Appl Genet 119:613–619

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103:110–117

    Article  PubMed  CAS  Google Scholar 

  • Silvar C, Casas AM, Kopahnke D, Habekuß A, Schweizer G, Gracia MP, Lasa JM, Ciudad FJ, Molina-Cano JL, Igartua E, Ordon F (2010a) Screening the Spanish barley core collection for disease resistance. Plant Breed 129:45–52

    Article  Google Scholar 

  • Silvar C, Dhif H, Igartua E, Kopahnke D, Gracia MP, Lasa JM, Ordon F, Casas AM (2010b) Identification of quantitative trait loci for resistance to powdery mildew in a Spanish barley landrace. Mol Breed 25:581–592

    Article  CAS  Google Scholar 

  • Silvar C, Flath K, Kopahnke D, Gracia MP, Lasa JM, Casas AM, Igartua E, Ordon F (2011a) Analysis of powdery mildew resistance in the Spanish barley core collection. Plant Breed 130:195–202

    Article  Google Scholar 

  • Silvar C, Perovic D, Casas AM, Igartua E, Ordon F (2011b) Development of a cost-effective pyrosequencing approach for SNP genoty** in barley. Plant Breed 130:394–397

    Article  CAS  Google Scholar 

  • Silvar C, Casas AM, Igartua E, Ponce-Molina LJ, Gracia MP, Schweizer G, Herz M, Flath K, Waugh R, Kopahnke D, Ordon F (2011c) Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theor Appl Genet. doi:10.1007/s00122-011-1644-2

  • Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922

    Article  PubMed  CAS  Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–829

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M et al (2008) Synteny and collinearity in plant genomes. Science 320:486–488

    Article  PubMed  CAS  Google Scholar 

  • Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A (2000) The complete sequence of 340 kb of DNA around the rice Adh-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–391

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol Biol 9:209

    Article  PubMed  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • van Ooijen JW (2004) MapQTL 5, Software for the map** of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • van Ooijen JW (2006) JoinMap 4, software for the calculation of genetics linkage maps in experimental populations. Kyazma, BV, Wageningen

    Google Scholar 

  • Van K, Hwang EY, Kim MY, Park HJ, Lee SH, Cregan PB (2005) Discovery of SNPs in soybean genotypes frequently used as the parents of map** populations in the United States and Korea. J Hered 96:529–535

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006a) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Grosse I, Hähnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006b) Genetic map** and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7:275

    Article  PubMed  Google Scholar 

  • Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, Šimková H, Kubaláková M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Doležel J, Keller B, Stein N (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell doi:10.1105/tpc.111.086629

  • Xue S, Li G, Jia HX, Lin F, Tang F, Wang M, An X, Zhang L, Kong Z, Ma Z (2010) Fine map** Fhb4. a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:147–156

    Article  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science and Innovation (projects GEN2006-28560-E, AGL2007-63625, and Plant-KBBE ExpResBar, EUI2009-04075), and co-funded by the European Regional Development Fund. CS held an I3P contract from CSIC. CS was supported by mobility fellowships from the Deutsche Forschungsgemeinschaft (DFG OR72/5-1), CSIC, Fundación Caja Inmaculada and COST Action FA0604 (Tritigen). The DNA of three standard map** populations was kindly provided by Dr. Nils Stein, IPK, Gatersleben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Perovic.

Additional information

Communicated by P. Hayes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvar, C., Perovic, D., Scholz, U. et al. Fine map** and comparative genomics integration of two quantitative trait loci controlling resistance to powdery mildew in a Spanish barley landrace. Theor Appl Genet 124, 49–62 (2012). https://doi.org/10.1007/s00122-011-1686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1686-5

Keywords

Navigation