Strategies of Breeding for Durable Disease Resistance in Cereals

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 64))

  • 720 Accesses

Abstract

Grain crops, like rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), barley (Hordeum vulgare), and — to a lesser extent — sorghum (Sorghum bicolor), oats (Avena sativa), and rye (Secale cereale) are of major importance for animal feeding and human nutrition (cf. FAO 2001). The grain yield and yield stability of these and other crops like potato and soybean are essential for ensuring human nutrition on a worldwide basis. However, in summary, yield losses of these crops due to biotic stresses are impressive. For example, Oerke et al. (1994) estimated that about 70% of the whole potential production would be lost if pests went uncontrolled and the (1992) estimated a loss of 30–40% corresponding to about US$ 300 billion/year (cf. Nelson 2001). The most cost-effective and environmentally friendly approach of avoiding such yield losses is the exploitation and use of genetic diversity of crop plants regarding reaction to major pathogens, i.e., breeding for pest and disease resistance. With respect to the mode of inheritance, race-specific “qualitative” types of resistance (monogenic resistances) have to be distinguished from non-race-specific, quantitative resistance (oligo- or polygenic resistances).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Fetch JM, Song QJ, Cregan PB, Frohberg CJ (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  • Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG (1997) Interactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucin-rich repeat coding region. Plant Cell 9:641–651

    PubMed  CAS  Google Scholar 

  • Armstrong CL, Parker GB, Pershing JC, Brown SM, Sanders PR, Duncan DR, Stone T, Dean DA, DeBoer DL, Hart J, Howe AR, Morrish FM, Pajeau ME, Petersen WL, Reich BJ, Rodriguez R, Santino CG, Sato SJ, Schuller W, Sims SR, Stehling S, Tarochione LJ, Fromm ME (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci 35:550–557

    Article  Google Scholar 

  • Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90:294–302

    Article  CAS  Google Scholar 

  • Backes G, Schwarz G, Wenzel G, Jahoor A (1996) Comparison between QTL analysis on powdery mildew resistance in barley based on detached primary leaves and on field data. Plant Breed 115:419–421

    Article  Google Scholar 

  • Becker D, Brettschneider R, Lörz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5:299–307

    Article  PubMed  CAS  Google Scholar 

  • Bender CM, Pretorius ZA, Kloppers FJ, Spies JJ (2000) Histopathology of leaf rust infection and development in wheat genotypes containing Lr12 and Lr13. J Phytopathol 148:65–76

    Article  Google Scholar 

  • Benhamou N, Belanger R (1998) Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. Radicislycopersici in tomato. Plant Physiol 118:1203–1212

    Article  PubMed  CAS  Google Scholar 

  • Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771

    PubMed  CAS  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskwicz BJ (1994) RPS2 of Arabidopsis thaliana: a leucin-rich repeat class of plant disease resistance genes. Science 265:1856–1860

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis of tomato. II. Evaluation of near isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpineelifolium. Theor Appl Genet 97:170–180

    Article  CAS  Google Scholar 

  • Besser K, Jarosch B, Langen G, Kogel KH (2000) Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways. Mol Plant Pathol 1:277–286

    Article  PubMed  CAS  Google Scholar 

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313

    Article  PubMed  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Phys 48:297–326

    Article  CAS  Google Scholar 

  • Brettschneider R, Becker D, Lörz H (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94:737–748

    Article  CAS  Google Scholar 

  • Brown AHD, Garvin DF, Burdon JJ, Abott DC, Read BJ (1996) The effect of combining scald resistance genes on disease levels, yield and quality traits in barley. Theor Appl Genet 93:361–366

    Article  CAS  Google Scholar 

  • Büschges R, Hollrichter K, Panstruga R, Simons G, Wolter M, Frijiters A, van Daelen R, van der Lee T, Diergaarde P, Groendijk J, Töpsch S, Vos P, Salamini F, Schulze Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  PubMed  CAS  Google Scholar 

  • Castillo AM, Vasil V, Vasil IK (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.) Bio/Technology 12:1366–1371

    Article  CAS  Google Scholar 

  • Castro A, Corey A, Filichkin T, Hayes P, Sandoval-Islas JS, Vivar H (2000) Stripe rust resistance QTL pyramids in barley. Proc 8th Int Barley Genet Symp, 22–27 Oct, Adelaide, Australia. Contrib Papers, vol II, pp 86–88

    Google Scholar 

  • Chan M-T, Lee T-M, Chang H-H (1992) Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol 33:577–583

    CAS  Google Scholar 

  • Chantret N, Sourdille P, Röder M, Tavaud M, Bernard M, Dousinault G (2000) Location and map** of the powdery mildew resistance gene MIRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat. Theor Appl Genet 100:1217–1224

    Article  CAS  Google Scholar 

  • Chen F, Prehn D, Hayes PM, Mulrooney D, Corey A, Vivar H (1994) Map** genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet 88:215–219

    CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Chester K (1933) The problem of acquired physiological immunity in plants. Q Rev Biol 8:275–324

    Article  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957–962

    Article  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Herrera-Estella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J 3:1181–1189

    Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  • De la Pena RC, Smith KP, Capettini F, Muelbauer GJ, Gallo-Meagher M, Dill-Macky R, Somers DA, Rasmuson DC (1999) Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theor Appl Genet 99:561–569

    Article  PubMed  Google Scholar 

  • Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD (1998) The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucin-rich repeat copy number. Plant Cell 10:1915–1925

    PubMed  CAS  Google Scholar 

  • Dweikat I, Ohm H, Patterson F, Cambron S (1997) Identification of RAPD markers for 11 Hessian fly resistance genes in wheat. Theor Appl Genet 94:419–423

    Article  CAS  Google Scholar 

  • Effertz RJ, Anderson JA, Francl LJ (2001) Restriction fragment length polymorphism map** of resistance to two races of Pyrenophora tritici-repentis in adult and seedling wheat. Phytopathology 91:572–578

    Article  PubMed  CAS  Google Scholar 

  • El Attari H, Hayes PM, Rebai A, Barrault G, Dechamp-Guillaume G, Sarrafi A (1998) Potential of doubled-haploid lines and localization of quantitative trait loci (QTL) for partial resistance to bacterial leaf streak (Xanthomonas campestris pv. hordei) in barley. Theor Appl Genet 96:95–100

    Article  Google Scholar 

  • FAO (2001) FAOSTAT Agriculture Data. Available: http: //apps.fao.org/

    Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Article  CAS  Google Scholar 

  • Flor H (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fought L, Kuç J (1996) Lack of specificity in plant extracts and chemicals as inducers of systemic resistance in cucumber plants to anthracnose. J Phytopathol 144:1–6

    Article  CAS  Google Scholar 

  • Funatsuki H, Kuroda M, Lazzeri PA, Müller E, Lörz H, Kishinami I (1995) Fertile transgenic barley generated by direct transfer to protoplasts. Theor Appl Genet 91:707–712

    Article  CAS  Google Scholar 

  • Gless C, Lörz H, Jähne-Gärtner A (1998) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J Plant Physiol 152:151–157

    Article  CAS  Google Scholar 

  • Görlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    PubMed  Google Scholar 

  • Gould J, Devery M, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95:426–434

    Article  PubMed  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrman RG (1991) Construction of an RFLP map in barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Graner A, Michalek W, Streng S (2000) Molecular map** of genes conferring resistance to viral and fungal pathogens. Proc 8th Int Barley Genet Symp, 22–27 Oct, Adelaide, Australia. Inv Papers, vol I, pp 45–52

    Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1996) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846

    Article  Google Scholar 

  • Haltermann D, Zhou F, Wie F, Wise RP, Schulze-Lefert P (2001) The Mla6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25:335–348

    Article  Google Scholar 

  • Hammer K (1997) Genpools — Struktur, Verfügbarkeit und Bearbeitung für die Züchtung. Sehr Genet Ressour 8:4–14

    Google Scholar 

  • Hansen G, Chilton M-D (1996) “Agrolistic” transformation of plant cells: integration of T-strands generated in planta. Proc Natl Acad Sci USA 93:14978–14983

    Article  PubMed  CAS  Google Scholar 

  • Hause B, Vorös K, Kogel KH, Beßer K, Wasternack C (1999) A jasmonate-responsive lipoxygenase of barley leaves is induced by plant activators but not by pathogens. J Plant Physiol 154:459–462

    Article  CAS  Google Scholar 

  • Havill NP, Raffa KF (1999) Effects of elicitation treatment and genotypic variation on induced resistance in Populus: impacts on gypsy moth (Leptidoptera: Lymantriidae) development and feeding behaviour. Oecologia 120:295–303

    Article  Google Scholar 

  • Hayes PM, Prehn D, Vivar H, Blake T, Comeau A, Henry I, Johnston M, Jones B, Steffenson B (1996) Multiple disease resistance loci and their relationship to agronomic and quality loci in a spring barley population. J.QTL. http: //probe.nalusda.gov:8000/otherdocs/jqtl/index.html

    Google Scholar 

  • Hayes PM, Castro A, Mequez-Cedillo L, Corey A, Henson C, Jones B, Kling J, Mather D, Matus I, Rossi C, Sato K (2002) A summary of published barley QTL reports, http://www.css.orst.edu/barley/nabgmp/qtlsum.htm

    Google Scholar 

  • Heun M (1992) Map** quantitative powdery mildew resistance of barley using a restriction fragment length polymorphisms map. Genome 32:1019–1025

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine map** and DNA marker-assisted pyramiding of three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoot RA (1983) A binary plant vector strategy based on separation of vir-and T-regions of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Benett J, Khush GS (1997a) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320

    Article  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ (1997b) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em Thell.). IX. Cultivars, land races and breeding lines grown in China. Plant Breed 116:233–238

    Article  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • Hwang BK, Heitefuss R (1982) Induced resistance of spring barley to Erysiphe graminis f. sp. hordei. Phytopathol Z 103:41–47

    Article  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Ittu M, Saulescu NN, Hagima I, Ittu G, Mustatea P (2000) Association of fusarium head blight resistance with gliadin loci in a winter wheat cross. Crop Sci 40:62–67

    Article  Google Scholar 

  • Iyer LM, Kumpatla SP, Chandrasekharan MB, Hall TC (2000) Transgene silencing in monocots. Plant Mol Biol 43:323–346

    Article  PubMed  CAS  Google Scholar 

  • Jaehne A, Becker D, Brettschneider R, Lörz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533

    Google Scholar 

  • Jacobsen J, Matthews P, Abbott D, Wang M, Waterhouse P (2000) Improvement of barley quality using genetic engineering. Proc 8th Int Barley Genet Symp, 22–27 Oct, Adelaide, Australia. Inv Pap, vol I, pp 121–123

    Google Scholar 

  • ** QL, Liu NZ, Qiu JL, Li DB, Wang J (1997) A truncated fragment of hairpinpss induces systemic resistance to Xanthomonas campestris pv. oryzae in rice. Physiol Mol Plant P 51:243–257

    Article  CAS  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen JH, Lübeck PS, Thordal-Christensen H, de Neergård E, Smedegård-Petersen V (1998) Mechanisms of induced resistance in barley against Drechslera teres. Phytopathology 88:698–707

    Article  Google Scholar 

  • Keller M, Keller B, Schachermayer G, Winzeier M, Schmid JE, Stamp P, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat x spelt population. Theor Appl Genet 98:903–912

    Article  CAS  Google Scholar 

  • Kicherer S, Backes G, Walther U, Jahoor A (2000) Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theor Appl Genet 100:881–888

    Article  CAS  Google Scholar 

  • Kinane JT, Jones PW (2000) Components of partial resistance to powdery mildew in wheat mutants. Eur J Plant Pathol 106:607–616

    Article  Google Scholar 

  • Kiyosawa S (1982) Genetics and epidemiological modeling of breakdown of plant disease resistance. Annu Rev Phytopathol 20:93–117

    Article  Google Scholar 

  • Kloppers FJ, Pretorius ZA (1997) Effects of combinations amongst genes Lrl3, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol 46:737–750

    Article  Google Scholar 

  • Kogel KH, Ortel B, Jarosch B, Atzorn R, Schiffer R, Wasternack C (1995) Resistance in barley against powdery mildew (Erysiphe graminis f. sp. hordei) is not associated with enhanced levels of endogenous jasmonates. Eur J Plant Pathol 101:319–332

    Article  CAS  Google Scholar 

  • Kolb FL, Bai GH, Mühlbauer GJ, Anderson JA, Smith KP, Fedak G (2001) Host resistance genes for fusarium head blight: map** and manipulation with molecular markers. Crop Sci 41:611–619

    Article  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Martini N, Meyerhofer R, Koncz-Kalman Z, Körber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471

    Article  PubMed  CAS  Google Scholar 

  • Kuç J (2001) Concepts and direction of induced systemic resistance in plants and its application. Eur J Plant Pathol 107:7–12

    Article  Google Scholar 

  • Kuç J, Barnes E, Daftsios A, Williams E (1959) The effect of amino acids on susceptibility of apple varieties to scab. Phytopathology 49:313–315

    Google Scholar 

  • Lahaye T, Shirasu K, Schulze Lefert P (1998) Chromosome landing at the barley Rarl locus. Mol Gen Genet 260:92–101

    Article  PubMed  CAS  Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) L6 gene in flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    PubMed  CAS  Google Scholar 

  • Leach JE, Cruz CMV, Bai J, Leung H (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol 39:187–224

    Article  PubMed  CAS  Google Scholar 

  • Leemann M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker M, Schippers B (1995) Biocontrol of fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  Google Scholar 

  • Li Z, Upadhyaya NM, Meena S, Gibbs AJ, Waterhouse PM (1997) Comparison of promoters and selectable marker genes for the use in indica rice transformation. Mol Breed 3:1–14

    Article  CAS  Google Scholar 

  • Lister RM, Ranieri R (1995) Distribution and economic importance of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress, APS Press, St Paul, Minnesota, pp 29–53

    Google Scholar 

  • Liu J, Liu D, Tao W, Li W, Wang Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24

    Article  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: duration of protection and effect of protection and root colonization. Phytopathology 85:1064–1068

    Article  Google Scholar 

  • Loebenstein G (1963) Further evidence on systemic resistance induced by localized necrotic virus infections in plants. Phytopathology 53:306–308

    Google Scholar 

  • Löbler M, Lee J (1998) Jasmonate signalling in barley. Trends Plant Sci 3:8–9

    Article  Google Scholar 

  • Macaulay M, Ramsay L, Powell W, Waugh R (2001) A representative, highly informative’ genoty** set’ of barley SSRs. Theor Appl Genet 102:801–809

    Article  CAS  Google Scholar 

  • Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T (1998) Screening of wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell Tissue Org 53:67–74

    Article  Google Scholar 

  • Manhandhar HK, Mathur SB, Smedegärd-Petersen V, Thordal-Christensen H (1999) Accumulation of transcripts for pathogenesis-related proteins and peroxidase in rice plants triggered by Pyricularia oryza, Bipolaris sorokinana and UV light. Physiol Mol Plant P 55:289–295

    Article  CAS  Google Scholar 

  • Martin GB, Brommenschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Matthews PR, Wang M-B, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    Article  CAS  Google Scholar 

  • McClung AM, Marchetti MA, Webb BD, Bollich CN (1997) Registration of ‘Jefferson’ rice. Crop Sci 37:629–630

    Article  Google Scholar 

  • McElroy D, Zhang W, Cao C, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    PubMed  CAS  Google Scholar 

  • McGrath PF, Vincent JR, Lei C-H, Lister RM, Torbert K, Pawlowski W, Wan Y, Lemaux PG, Rines H, Somers DA (1997) Coat protein mediated resistance to isolates of barley yellow dwarf virus in oats and barley. Eur J Plant Pathol 103:695–710

    Article  CAS  Google Scholar 

  • Messmer MM, Seyfarth R, Keller M, Schachermayer G, Winzeier M, Zanetti S, Feuillet C, Keller B (2000) Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet 100:419–431

    Article  CAS  Google Scholar 

  • Michelmore RW (1995) Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol 33:393–428

    Article  PubMed  CAS  Google Scholar 

  • Mindrinos M, Katagiri F, Yu GL, Ausubel FM (1994) The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucin-rich repeats. Plant Cell 78:1089–1099

    CAS  Google Scholar 

  • Miyazaki C, Osanai E, Saeki K, Ito K, Konishi T, Sato K, Saito A (2001) Map** of quantitative trait loci conferring resistance to barley yellow mosaic virus in a Chinese barley landrace Mokusekko 3. Breed Sci 51:171–177

    Article  CAS  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome map**, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Moharramiphour S, Tsumuki H, Sato K, Yoshida H (1997) Map** resistance to cereal aphids in barley. Theor Appl Genet 94:592–596

    Article  Google Scholar 

  • Molina A, Görlach J, Volrath S, Ryals J (1999) Wheat genes encoding two types of PR-1 proteins are pathogen inducible but do not respond to activators of systemic acquired resistance. Mol Plant Microbe Interact 12:53–58

    Article  PubMed  CAS  Google Scholar 

  • Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Uknes S (1998) Induced resistance response in maize. Mol Plant Microbe Interact 11:643–658

    Article  PubMed  CAS  Google Scholar 

  • Natural Resources Institute (1992) A synopsis of integrated pest management in develo** countries in the tropics. Natural Resources Institute, Chatham

    Google Scholar 

  • Nelson R (2001) Biotic stresses in crops. In: Nösberger J, Geiger HH, Struik PC (eds) Crop science: progress and prospects. CABI, Wallingford

    Google Scholar 

  • Nelson RR (1978) Genetics of horizontal resistance to plant diseases. Annu Rev Phytopathol 16:359–78

    Article  Google Scholar 

  • Oerke EC, Dehne HW, Schönbeck F, Weber A (1994) Crop production and crop protection: estimated losses in major food and cash crops, Elsevier, Amsterdam

    Google Scholar 

  • Oostendorp M, Kunz W, Dietrich B, Staub T (2001) Induced disease resistance in plants by chemicals. Eur J Plant Pathol 107:19–28

    Article  CAS  Google Scholar 

  • Ordon F, Götz R, Friedt W (1993) Genetic stocks to barley yellow mosaic viruses (BaMMV, BaYMV, BaYMV-2) in Germany. Barley Genet Newslett 22:46–49

    Google Scholar 

  • Ordon F, Wenzel W, Friedt W II (1998) Recombination: molecular markers for resistance genes in major grain crops. Progress in Botany 59. Springer, Berlin Heidelberg New York, pp 49–79

    Chapter  Google Scholar 

  • Ordon F, Schiemann A, Pellio B, Dauck V, Bauer E, Streng S, Friedt W, Graner A (1999) Application of molecular markers in breeding for resistance to the barley yellow mosaic virus complex. J Plant Dis Prot 106:256–264

    CAS  Google Scholar 

  • Parker JE, Coleman MJ (1997) Molecular intimacy between proteins specifying plant-pathogen recognition. Trends Biochem Sci 22:291–296

    Article  PubMed  CAS  Google Scholar 

  • Parker JE, Coleman MJ, Szabò V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene Rpp5 shares similarity to the toll and interleucin-1 receptor with N and L6. Plant Cell 9:879–894

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Patrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722

    PubMed  CAS  Google Scholar 

  • Pecchioni N, Faccioli P, Toubia-Rahme H, Vale G, Terzi V (1996) Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theor Appl Genet 93:97–101

    Article  Google Scholar 

  • Pedersen WL (1988) Pyramiding major genes for resistance to maintain residual effects. Annu Rev Phytopathol 26:369–378

    Article  Google Scholar 

  • Pellio B, Werner K, Friedt W, Graner A, Ordon F (2000) Resistance to the barley yellow mosaic virus complex — from Mendelian genetics towards map based cloning. Czech J Genet Plant Breed 36:84–87

    Google Scholar 

  • Piffanelli P, Devoto A, Schulze-Lefert P (1999) Defence signalling pathways in cereals. Curr Opin Plant Biol 2:295–300

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Bio/Technology 8:535–542

    Article  CAS  Google Scholar 

  • Proeseler G, Hartleb H, Kophanke D, Lehmann CO (1989) Resistenzeigenschaften im Gersten-und Weizensortiment Gatersleben. 27. Prüfung von Gersten auf ihr Verhalten gegenüber dem Milden Gerstenmosaik-Virus (barley mild mosaic virus), Gerstengelbmosaik-Virus (barley yellow mosaic virus), Drechsler a teres (Sacc.) Shoem. und Puccinia hordei Otth. Kulturpflanze 37:145–154

    Article  Google Scholar 

  • Qi X, Niks E, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215

    Article  CAS  Google Scholar 

  • Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theor Appl Genet 99:877–844

    Article  CAS  Google Scholar 

  • Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-medmted transformation of rice (Oryza sauva L.). Bio/Technology 8:33–37

    Article  CAS  Google Scholar 

  • Raman H, Read BJ, Brown AHD, Abbott DC (1999) Molecular markers and pyramiding of multiple genes for resistance to scald in barley. Proc 9th Aust Barley Tech Symp, Melbourne

    Google Scholar 

  • Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardie L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Reiss E (1986) Senkung des Gelbrostbefalls anfälliger Gerstenpflanzen nach Applikation von Infiltraten aus gelbrostinfizierten, resistenten Gerstenblättern. Arch Phytopathol Pfl 22:271

    Article  Google Scholar 

  • Repellin A, Båga M, Jauhar PP, Chibbar RN (2001) Genetic enrichment of cereal crops via alien gene transfer: new challenges. Plant Cell Tissue Org 64:159–183

    Article  CAS  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler LJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Schondelmaier J, Jung C (1998) Map** of quantitative loci affecting Drechslern teres resistance in barley with molecular markers. Theor Appl Genet 97:1225–1234

    Article  CAS  Google Scholar 

  • Roeder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    Google Scholar 

  • Rommens CM, Kishore GM (2000) Exploiting the full potential of disease resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125

    Article  PubMed  CAS  Google Scholar 

  • Ross A (1966) Systemic effects of local lesion formation. In: Beemster A, Dykstra S (eds) Virus of plants. North Holland, Amsterdam, pp 127–150

    Google Scholar 

  • Ryals J, Uknes S, Ward E (1994) Systemic acquired resistance. Plant Physiol 104:1109–1112

    PubMed  CAS  Google Scholar 

  • Saeki K, Miyazaki C, Hirota N, Saito A, Ito K, Konishi T (1999) RFLP map** of BaYMV resistance gene rym3 in barley (Hordeum vulgare). Theor Appl Genet 99:727–732

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Tada Y, Yokozeki Y, Akagi H, Hayashi N, Fujimura T, Ichikawa N (1999) Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and a leucine-rich repeat. Plant Mol Biol 40:847–855

    Article  PubMed  CAS  Google Scholar 

  • Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000) Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci 40:792–797

    Article  CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Particu Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  • Sarhan ART, Király Z, Sziráki I, Smedegård-Petersen V (1991) Increased levels of cytokinins in barley leaves having the systemic acquired resistance to Biploaris sorokiniana (Sacc.) Shoemaker. J Phytopathol 113:101–108

    Article  Google Scholar 

  • Sato K, Inukai T, Hayes PM (2001) QTL analysis of resistance to the rice blast pathogen in barley (Hordeum vulgare). Theor Appl Genet 102:916–920

    Article  CAS  Google Scholar 

  • Schaefer JF, Caldwell RM, Patterson FL, Compton LE (1963) Wheat leaf rust combinations. Phytopathology 53:569–5673

    Google Scholar 

  • Scheurer KS, Friedt W, Huth W, Waugh R, Ordon F (2001) QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.). Theor Appl Genet 103:1074–1083

    Article  CAS  Google Scholar 

  • Schiemann A, Backes G (2000) The use of molecular markers in practical barley breeding. Proc 8th Int Barley Genet Symp, 22–27 Oct, Adelaide, Australia. Contrib Papers, vol III, pp 42–44

    Google Scholar 

  • Schweizer P, Schlagenhauf E, Schaffrath U, Dudler R (1999) Different patterns of host genes are induced in rice by Pseudomonas syringae, a biological inducer of resistance, and the chemical inducer benzothiadiazole (BTH). Eur J Plant Pathol 105:659–665

    Article  CAS  Google Scholar 

  • Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338:274–276

    Article  CAS  Google Scholar 

  • Shimura M, Iwata M, Tashiro N, Sekizawa Y, Suzuki Y, Mase S, Watanabe T (1981) Anticonidial germination factors induced in the presence of probenazole and properties of four active substances. Agric Biol Chem 45:1431–1435

    Article  CAS  Google Scholar 

  • Simons G, Groenendijk J, Wijbrandi J, Rejans M, Groenen J, Diergaarde P, van der Lee T, Bleeker M, Onstenk J, de Both M, Haring M, Mes J, Cornelissen B, Zabeau M, Vos P (1998) Dissection of the Fusarium l2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068

    PubMed  CAS  Google Scholar 

  • Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015

    Article  CAS  Google Scholar 

  • Smith JA, Métraux JP (1991) Pseudomonas syringae pv. syringae induces systemic resistance to Pyricola oryza in rice. Physiol Mol Plant P 37:20–27

    Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Spaner D, Shugar LP, Choo TM, Falak I, Briggs KG, Legge WG, Falk DE, Ullrich SE, Tinker NA, Steffenson BJ, Mather DE (1998) Map** of disease resistance loci in barley based on visual assessment of naturally occurring symptoms. Crop Sci 38:843–850

    Article  Google Scholar 

  • Stadnik MJ, Buchenauer H (1999) Accumulation of autofluorogenic compounds at the penetration site of Blumeria graminis f. sp. tritici is associated with both benzothiadiazole-induced and quantitative resistance of wheat. J Phytopathol 147:615–622

    Article  CAS  Google Scholar 

  • Stadnik MJ, Buchenauer H (2000) Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f. sp. tritici, Physiol Mol Plant P 57:25–34

    Article  CAS  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker B, Ellis JG, Jones JDG (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  PubMed  CAS  Google Scholar 

  • Steffenson BJ, Hayes PM, Kleinhofs A (1996) Genetics of seedling and adult plant reistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92:552–558

    Article  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Plant Pathol 35:235–270

    CAS  Google Scholar 

  • Takken FLW, Joosten MHAJ (2000) Plant resistance genes: their structure, function and evolution. Eur J Plant Pathol 106:699–713

    Article  CAS  Google Scholar 

  • Takken FL, Thomas CM, Joosten MH, Goldstein C, Westerink N, Hille J, Nijkamp HJJ, De Wit PJGM, Jones JDG (1999) A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant J 20:279–288

    Article  PubMed  CAS  Google Scholar 

  • Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047

    Article  CAS  Google Scholar 

  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JDG (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognition specificity in Cf-4 and Df-9. Plant Cell 9:2209–2224

    PubMed  CAS  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M-B, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol 15:16–21

    Article  CAS  Google Scholar 

  • Ton J, Pieterse CMJ, Boon JJ (1999) Changes in chemical composition related to fungal infection and induced resistance to carnation and radish investigated by pyrolysis mass spectrometry. Physiol Mol Plant P 55:297–311

    Article  CAS  Google Scholar 

  • Ton J, Davison S, Van Loon LC, Pieterse CMJ (2001) Hereditability of rhizobacteria-mediated induced systemic resistance and basal resistance in Arabidopsis. Eur J Plant Pathol 107:63–68

    Article  Google Scholar 

  • Too**da T, Baird E, Booth A, Broers L, Hayes P, Powell P, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131

    Article  CAS  Google Scholar 

  • Too**da T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Ramsay L, Vivar H, Waugh R (2000) Map** quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet 101:580–589

    Article  CAS  Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology 6:1072–1074

    Article  CAS  Google Scholar 

  • Tu J, Ona I, Zhang Q, Mew TW, Kush GS, Datta SK (1998) Transgenic rice variety IR72 with Xa21 is resistant to bacterial blight. Theor Appl Genet 97:31–36

    Article  CAS  Google Scholar 

  • Tyagi AK, Mohanty A, Chaudhury A, Maheswari SC (1999) Transgenic rice: a valuable monocot system for crop improvement and gene research. Crit Rev Biotech 19:41–79

    Article  CAS  Google Scholar 

  • Underwood N, Morris W, Gross K, Lockwood JR (2000) Induced resistance to Mexican bean beetles in soybean: variation among genotypes and lack of correlation with constitutive resistance. Oecologia 122:83–89

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Van Sanford D, Anderson J, Campbell K, Costa J, Cregan P, Griffey C, Hayes P, Ward R (2001) Discovery and deployment of molecular markers linked to fusarium head blight resistance: an integrated system for wheat and barley. Crop Sci 41:638–644

    Article  Google Scholar 

  • Vorös K, Feussner I, Kühn H, Lee J, Graner A, Löbler M, Parthier B, Wasternack C (1998) Characterization of a methyl-jasmonate-inducible lipoxygenase from barley (Hordeum vulgare cv Salome) leaves. Eur J Biochem 251:36–44

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Le T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohbergy RC (1999) RFLP map** of QTL for fusarium head blight resistance in wheat. Crop Sci 39:805–811

    Article  CAS  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed  CAS  Google Scholar 

  • Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP map** of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

    PubMed  CAS  Google Scholar 

  • Wang G-L, Song W-L, Ruan D-L, Sideris S, Ronald PC (1996) The cloned gene Xa21 confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant Microbe Interact 9:850–855

    Article  PubMed  CAS  Google Scholar 

  • Wang M-B, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:347–356

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Taramino G, Yang D, Liu G, Tingey SV, Miao GH, Wang GL (2001) Rice ESTs with disease-resistance gene-or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol Gen Genet 265:302–310

    CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999): The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    PubMed  CAS  Google Scholar 

  • Weiskorn C, Krämer M, Huth W, Friedt W, Ordon F (2002) Investigations on the efficiency of systemic acquired resistance (SAR) against a German isolate of BYDV-PAV in barley (Hordeum vulgare L.). J Plant Dis Prot (in press)

    Google Scholar 

  • Werner K, Friedt W, Ordon F (2000) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex based on molecular markers and DH-lines. Proc 8th Int Barley Genet Symp, Adelaide, 22–27 Oct, Australia. Contrib Papers, vol II, pp 200–202

    Google Scholar 

  • Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93:8776–8781

    Article  PubMed  CAS  Google Scholar 

  • **a XC, Hsam SLK, Stephan U, Yang TM, Zeller FJ (1995) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). VI. Wheat cultivars grown in China. Plant Breed 114:174–175

    Article  Google Scholar 

  • Yoshimura S, Yoshimura A, Iwata N, McCouch SR, Abenes ML, Baraoidan MR, Mew TW, Nelson RJ (1995) Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed 1:375–378

    Article  CAS  Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Young ND (1996) QTL map** and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  PubMed  CAS  Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

  • Zambryski P, Tempe J, Schell J (1989) Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56:193–201

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Wu R (1988) Efficient regeneration of transgenic rice plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor Appl Genet 6:835–840

    Article  Google Scholar 

  • Zhao ZY, Cai TS, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Kurth J, Wie F, Elliott C, Valè G, Yahiaoui N, Keller B, Sommerville S, Wise R, Schulze-Lefert P (2001) Cell-autonomous expression of barley Mla1 confers race specific resistance to the powdery mildew fungus via Rar 1-independent signaling pathway. Plant Cell 13:337–350

    PubMed  CAS  Google Scholar 

  • Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Too**da T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221–1232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friedt, W., Werner, K., Pellio, B., Weiskorn, C., Krämer, M., Ordon, F. (2003). Strategies of Breeding for Durable Disease Resistance in Cereals. In: Esser, K., Lüttge, U., Beyschlag, W., Hellwig, F. (eds) Progress in Botany. Progress in Botany, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55819-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55819-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62838-2

  • Online ISBN: 978-3-642-55819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation