Log in

A channel-confined strategy for synthesizing CoN-CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing hybrid transition metal compounds with optimized electronic structure and firmly dispersing them on a matrix to avoid aggregation and shedding is of great significance for achieving high electrocatalytic performances. Herein, an adsorption-complexation-calcination strategy based on channel confining effect is explored to obtain CoN-CoOx hybrid nanoparticles uniformly dispersed in mesoporous carbon. The CoN-CoOx/C composite exhibits excellent electrocatalytic behavior for oxygen reduction reaction (ORR). The half-wave potential and durability are comparable or superior to those of Pt/C. When applying as cathode catalyst for a primary zinc-air battery, the open-circuit voltage and peak power density reach up to 1.394 V and 109.8 mW·cm−2, respectively. A high gravimetric energy density of 950.3 Wh·kgZn−1 is delivered at 10 mA·cm−2 with good rate capability and stability. Density functional theory (DFT) calculation demonstrates the favorable ORR intermediate adsorbability and metallic characteristics of CoN grains with oxide hybridization to optimize the electronic structure. This work provides a facile adjustable approach for obtaining highly dispersed nanoparticles with controllable hybrid composition on a substrate, which is important for future design and optimization of high-performance electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

    Article  CAS  Google Scholar 

  2. Yang, H. Z.; Wang, B.; Li, H. Y.; Ni, B.; Wang, K.; Zhang, Q.; Wang, X. Trimetallic sulfide mesoporous nanospheres as superior electrocatalysts for rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1801839.

    Article  Google Scholar 

  3. Wang, L.; Wang, X. T.; Zhong, J. H.; **ao, K.; Ouyang, T.; Liu, Z. Q. Filling the charge-discharge voltage gap in flexible hybrid zinc-based batteries by utilizing a pseudocapacitive material. Chem. Eur. J. 2021, 27, 5796–5802.

    Article  CAS  Google Scholar 

  4. Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Liu, Z. Q. Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 6492–6499.

    Article  CAS  Google Scholar 

  5. Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

    Article  CAS  Google Scholar 

  6. Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

    Article  CAS  Google Scholar 

  7. Guo, X. M.; Qian, C.; Shi, R. H.; Zhang, W.; Xu, F.; Qian, S. L.; Zhang, J. H.; Yang, H. X.; Yuan, A. H.; Fan, T. X. Biomorphic Co-N-C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction. Small 2019, 15, 1804855.

    Article  Google Scholar 

  8. Yang, J.; Zhu, G. X.; Liu, Y. J.; **a, J. X.; Ji, Z. Y.; Shen, X. P.; Wu, S. K. Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 4712–4721.

    Article  CAS  Google Scholar 

  9. Liu, Y. J.; **e, X. L.; Zhu, G. X.; Mao, Y.; Yu, Y. N.; Ju, S. X.; Shen, X. P.; Pang, H. Small sized Fe-Co sulfide nanoclusters anchored on carbon for oxygen evolution. J. Mater. Chem. A 2011, 7, 15851–15861.

    Article  Google Scholar 

  10. Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2011, 12, 1327–1331.

    Article  Google Scholar 

  11. Zhang, H.; ** Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.

    Article  CAS  Google Scholar 

  12. Huang, K. K.; Sun, Y.; Zhang, Y.; Wang, X. Y.; Zhang, W.; Feng, S. H. Hollow-structured metal oxides as oxygen-related catalysts. Adv. Mater. 2019, 31, 1801430.

    Article  Google Scholar 

  13. Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Ma, T. Y.; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13291–13296.

    Article  CAS  Google Scholar 

  14. An, L.; Huang, W. F.; Zhang, N. L.; Chen, X.; **a, D. G. A novel CoN electrocatalyst with high activity and stability toward oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 62–65.

    Article  CAS  Google Scholar 

  15. Doan-Nguyen, V. V. T.; Zhang, S.; Trigg, E. B.; Agarwal, R.; Li, J.; Su, D.; Winey, K. I.; Murray, C. B. Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. ACS Nano 2015, 9, 8108–8115.

    Article  CAS  Google Scholar 

  16. Zhao, S. Y.; Wang, K.; Zou, X. L.; Gan, L.; Du, H. D.; Xu, C. J.; Kang, F. Y.; Duan, W. H.; Li, J. Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Res. 2019, 12, 925–930.

    Article  CAS  Google Scholar 

  17. Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 2018, 118, 2313–2339.

    Article  CAS  Google Scholar 

  18. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  19. Hu, T. J.; Wang, Y.; Zhang, L. N.; Tang, T.; **ao, H.; Chen, W. W.; Zhao, M.; Jia, J. F.; Zhu, H. Y. Facile synthesis of PdO-doped Co3O4 nanoparticles as an efficient bifunctional oxygen electrocatalyst. Appl. Catal. B: Environ. 2019, 243, 175–182.

    Article  CAS  Google Scholar 

  20. Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; **a, H. C.; Cheng, F. Y.; Zhou, M. F.; Li, J.; Qiao, Y. Y.; Mu, S. C.; Xu, Q. Co2P-CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting. Adv. Funct. Mater. 2018, 28, 1805641.

    Article  Google Scholar 

  21. Yang, Y.; Zeng, R.; **ong, Y.; DiSalvo, F. J.; Abruña, H. D. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2019, 141, 19241–19245.

    Article  CAS  Google Scholar 

  22. Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

    Article  CAS  Google Scholar 

  23. Tan, H.; Liu, Z. H.; Chao, D. L.; Hao, P.; Jia, D. D.; Sang, Y. H.; Liu, H.; Fan, H. J. Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device. Adv. Energy Mater. 2018, 8, 1800685.

    Article  Google Scholar 

  24. Guo, X. M.; Qian, C.; Wan, X. H.; Zhang, W.; Zhu, H. W.; Zhang, J. H.; Yang, H. X.; Lin, S. L.; Kong, Q. H.; Fan, T. X. Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale 2020, 12, 4374–4382.

    Article  CAS  Google Scholar 

  25. Zhang, H. C.; Li, Y. J.; Zhang, G. X.; Xu, T. H.; Wan, P. B.; Sun, X. M. A metallic CoS2 nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2015, 3, 6306–6310.

    Article  CAS  Google Scholar 

  26. Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.

    Article  Google Scholar 

  27. Chen, C.; Su, H.; Lu, L. N.; Hong, Y. S.; Chen, Y. Z.; **ao, K.; Ouyang, T.; Qin, Y. L.; Liu, Z. Q. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem. Eng. J. 2021, 408, 127814.

    Article  CAS  Google Scholar 

  28. Huang, M.; **, B. J.; Shi, N. X.; Feng, J. K.; Qian, Y. T.; Xue, D. F.; **ong, S. L. Quantum-matter Bi/TiO2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage. Small Struct. 2021, 2, 2000085.

    Article  CAS  Google Scholar 

  29. Tian, W. Z.; **, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; **ong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

    Article  Google Scholar 

  30. Liang, Z. Z.; Fan, X.; Lei, H. T.; Qi, J.; Li, Y. Y.; Gao, J. P.; Huo, M. L.; Yuan, H. T.; Zhang, W.; Lin, H. P. et al. Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2018, 57, 13187–13191.

    Article  CAS  Google Scholar 

  31. Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co, N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.

    Article  CAS  Google Scholar 

  32. Trogadas, P.; Fuller, T. F.; Strasser, P. Carbon as catalyst and support for electrochemical energy conversion. Carbon 2014, 75, 5–42.

    Article  CAS  Google Scholar 

  33. Lyu, X.; Li, G.; Chen, X. K.; Shi, B. W.; Liu, J. Z.; Zhuang, L. Z.; Jia, Y. Atomic cobalt on defective bimodal mesoporous carbon toward efficient oxygen reduction for zinc-air batteries. Small Methods 2019, 3, 1800450.

    Article  Google Scholar 

  34. Galeano, C.; Meier, J. C.; Peinecke, V.; Bongard, H.; Katsounaros, I.; Topalov, A. A.; Lu, A. H.; Mayrhofer, K. J. J.; Schüth, F. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 2012, 134, 20457–20465.

    Article  CAS  Google Scholar 

  35. Zhang, X. L.; Gao, R.; Li, Z. Y.; Hu, Z. B.; Liu, H. Y.; Liu, X. F. Enhancing the performance of CoO as cathode catalyst for Li-O2 batteries through confinement into bimodal mesoporous carbon. Electrochim. Acta 2016, 201, 134–141.

    Article  CAS  Google Scholar 

  36. Wang, C. Y.; Zhao, Y. J.; Zhou, L. L.; Liu, Y.; Zhang, W.; Zhao, Z. W.; Hozzein, W. N.; Alharbi, H. M. S.; Li, W.; Zhao, D. Y. Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries. J. Mater. Chem. A 2018, 6, 21550–21557.

    Article  CAS  Google Scholar 

  37. Chen, L. J.; Chen, S. J.; Qin, Y.; Xu, L.; Yin, G. Q.; Zhu, J. L.; Zhu, F. F.; Zheng, W.; Li, X. P.; Yang, H. B. Construction of porphyrin-containing metallacycle with improved stability and activity within mesoporous carbon. J. Am. Chem. Soc. 2018, 140, 5049–5052.

    Article  CAS  Google Scholar 

  38. Egeberg, A.; Warmuth, L.; Riegsinger, S., Gerthsen, D.; Feldmann, C. Pyridine-based low-temperature synthesis of CoN, Ni3N and Cu3N nanoparticles. Chem. Commun. 2018, 54, 9957–9960.

    Article  CAS  Google Scholar 

  39. Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Yu, X.; Wang, C.; Ma, T. L. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2019, 12, 2774–2780.

    Article  CAS  Google Scholar 

  40. Huang, M.; Mi, K.; Zhang, J. H.; Liu, H. L.; Yu, T. T.; Yuan, A. H.; Kong, Q. H.; **ong, S. L. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 2017, 5, 266–274.

    Article  CAS  Google Scholar 

  41. Tang, C. W.; Wang, C. B.; Chien, S. H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 2008, 473, 68–73.

    Article  CAS  Google Scholar 

  42. Zhang, J. H.; Huang, M.; **, B. J.; Mi, K.; Yuan, A. H.; **ong, S. L. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701330.

    Article  Google Scholar 

  43. Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868.

    Article  CAS  Google Scholar 

  44. Xue, Y. C.; Guo, X. M.; Wu, M. R.; Chen, J. L.; Duan, M. T.; Shi, J.; Zhang, J. H.; Cao, F.; Liu, Y. J.; Kong, Q. H. Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries. Nano Res., in press, https://doi.org/10.1007/s12274-021-3640-4.

  45. Han, S. W.; Bang, J.; Ko, S. H.; Ryoo, R. Variation of nitrogen species in zeolite-templated carbon by low-temperature carbonization of pyrrole and the effect on oxygen reduction activity. J. Mater. Chem. A 2019, 7, 8353–8360.

    Article  CAS  Google Scholar 

  46. Wang, M. Q.; Yang, W. H.; Wang, H. H.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Pyrolyzed Fe-N-C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal. 2014, 4, 3928–3936.

    Article  CAS  Google Scholar 

  47. Wei, R. C.; Huang, M.; Ma, W. Z.; ** rate for fast sodium storage. J. Energy Chem. 2020, 49, 136–146.

    Article  Google Scholar 

  48. Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

    Article  CAS  Google Scholar 

  49. Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13840–13844.

    Article  CAS  Google Scholar 

  50. Si, Y. J.; Zhang, Y. J.; Lu, L. H.; Zhang, S.; Chen, Y.; Liu, J. H.; **, H. Y.; Hou, S. E.; Dai, K.; Song, W. G. Boosting visible light photocatalytic hydrogen evolution of graphitic carbon nitride via enhancing it interfacial redox activity with cobalt/nitrogen doped tubular graphitic carbon. Appl. Catal. B: Environ. 2018, 225, 512–518.

    Article  CAS  Google Scholar 

  51. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, 2115–2117.

    Article  CAS  Google Scholar 

  52. Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13840–19844.

    Article  CAS  Google Scholar 

  53. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.

    Article  CAS  Google Scholar 

  54. Dregely, D.; Lindfors, K.; Lippitz, M.; Engheta, N.; Totzeck, M.; Giessen, H. Imaging and steering an optical wireless nanoantenna link. Nat. Commun. 2014, 5, 4354.

    Article  CAS  Google Scholar 

  55. Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

    Article  CAS  Google Scholar 

  56. Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S. W.; Cai, J. Y.; Sun, D.; Zhu, Y. C. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2018, 2, 2681–2693.

    Article  CAS  Google Scholar 

  57. Varga, T.; Ballai, G.; Vásárhelyi, L.; Haspel, H.; Kukovecz, Á.; Kónya, Z.. Co4N/nitrogen-doped graphene: A non-noble metal oxygen reduction electrocatalyst for alkaline fuel cells. Appl. Catal. B: Environ. 2018, 237, 826–834.

    Article  CAS  Google Scholar 

  58. Zheng, X. J.; Wu, J.; Cao, X. C.; Abbott, J.; **, C.; Wang, H. B.; Strasser, P.; Yang, R. Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B: Environ. 2019, 241, 442–451.

    Article  CAS  Google Scholar 

  59. Liu, Z. H.; Tan, H.; Liu, D. B.; Liu, X. B.; **n, J. P.; **e, J. F.; Zhao, M. W.; Song, L.; Dai, L. M.; Liu, H. Promotion of overall water splitting activity over a wide pH range by interfacial electrical effects of metallic NiCo-nitrides nanoparticle/NiCo2O4 nanoflake/graphite fibers. Adv. Sci. 2019, 6, 1801829.

    Article  Google Scholar 

  60. Yin, J.; Li, Y. X.; Lv, F.; Fan, Q. H.; Zhao, Y. Q.; Zhang, Q. L.; Wang, W.; Cheng, F. Y.; **, P. X.; Guo, S. J. NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries. ACS Nano 2017, 77, 2275–2283.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52102100), Natural Science Foundation of Jiangsu Province (No. BK20181469), the Science and Technology Planning Social Development Project of Zhenjiang City (No. SSH20190140049) and Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhao Zhang or Shenglin **ong.

Electronic Supplementary Material

12274_2021_3835_MOESM1_ESM.pdf

A channel-confined strategy for synthesizing CoN-CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Zhang, W., Shi, J. et al. A channel-confined strategy for synthesizing CoN-CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries. Nano Res. 15, 2092–2103 (2022). https://doi.org/10.1007/s12274-021-3835-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3835-8

Keywords

Navigation