Log in

Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Diminishing the size of active sites in catalysts is promising to improve the kinetics of oxygen reduction reaction (ORR) and reduce the cost of metal–air batteries. However, the facile preparation of high-performance catalysts with nanoscale active sites still suffers from great challenge. Herein, we report a facile template-free strategy to fabricate Co single atoms and nanoparticles dispersed on porous N-doped carbon nanotube (Co-NCNT) by the pyrolysis of the composites of metal–organic complexes and porous carbon nanotube. Different from the conventional strategy, the precursor metal–organic complexes in this work were prepared under mild conditions and used without complex purification procedures. Compared with the pristine carbon nanotube, N-doped carbon nanotube with abundant mesopores contribute to the formation of nanoscale Co sites. This resultant electrocatalyst Co-NCNT shows an impressive ORR half-wave potential of 0.87 V in alkaline solution, outperforming that of commercial Pt/C (20 wt%). The catalyst Co-NCNT displays high tolerance to strong alkali solution, endowing the aqueous Zn-air batteries with high discharge voltages and power density. In addition, the specific capacity achieves 803 mAh·gZn−1 under a current density of 10 mA·cm−1. This research provides a new solution for the simple synthesis of carbon-based electrocatalysts for metal–air batteries.

摘要

减小催化剂的活性颗粒尺寸对改善氧还原反应动力学和降低金属-空气电池成本具有重要意义。然而, 简单地制备具有纳米级活性中心的高性能催化剂仍面临很大的挑战。在此, 我们提出了一种简便的无模板法用于制备具有Co单原子和纳米颗粒的多孔氮掺杂碳纳米管基催化剂。该材料是通过将金属-有机配合物和多孔碳纳米管的复合材料进行热解得到的。与传统方法不同的是, 本研究在温和的条件下制备了前驱体金属-有机配合物, 该制备前驱体的过程不需要复杂的纯化步骤。与原始碳纳米管相比, 具有丰富介孔的N掺杂碳纳米管有助于纳米尺度Co位点的形成。在碱性溶液中, 合成的Co-NCNT催化剂具有高达0.87 V的氧还原半波电位, 优于商用Pt/C(20 wt%)。催化剂Co-NCNT对**碱溶液具有较高的耐受性, 用其组装的锌-空气电池具有较高的开路电压和功率密度。此外, 在10 mA·cm−1的电流密度下, 比容量可达到803 mAh·gZn−1。 本研究为金属-空气电池碳基电催化剂的简单合成提供了新的解决方案。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao Y, Zhang L, Liu J, Adair K, Zhao F, Sun Y, Wu T, Bi X, Amine K, Lu J, Sun X. Atomic/molecular layer deposition for energy storage and conversion. Chem Soc Rev. 2021;50(6):3889.

    Article  CAS  Google Scholar 

  2. Zhao Q, Yan Z, Chen C, Chen J. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem Rev. 2017;117(15):10121.

    Article  CAS  Google Scholar 

  3. Wang LP, Shen QX, Tian L, Yang N, **e G, Li B. Preparation of PtCo composite nanowires and characterization of electrocatalytic performance for oxygen reduction reaction. Chin J Rare Met. 2019;43(4):367.

    Google Scholar 

  4. Huang X, Shen T, Sun S, Hou Y. Synergistic modulation of carbon-based, precious-metal-free electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interf. 2021;13(6):6989.

    Article  CAS  Google Scholar 

  5. Du C, Liu X, Ye G, Gao X, Zhuang Z, Li P, **ang D, Li X, Clayborne AZ, Zhou X, Chen W. Balancing the micro-mesoporosity for activity maximization of N-doped carbonaceous electrocatalysts for the oxygen reduction reaction. Chemsuschem. 2019;12(5):1017.

    Article  CAS  Google Scholar 

  6. Li H, Shu X, Tong P, Zhang J, An P, Lv Z, Tian H, Zhang J, **a H. Fe–Ni alloy nanoclusters anchored on carbon aerogels as high-efficiency oxygen electrocatalysts in rechargeable Zn–air batteries. Small. 2021;17(36):2102002.

    Article  CAS  Google Scholar 

  7. Hu L, Gu S, Yu W, Zhang W, **e Q, Pan C, Tang J, Yu G. Facile preparation of CoO nanoparticles embedded N-doped porouscarbon from conjugated microporous polymer for oxygen reduction reaction. J Colloid Interface Sci. 2020;562:550.

    Article  CAS  Google Scholar 

  8. Shi J, Shu X, **ang C, Li H, Li Y, Du W, An P, Tian H, Zhang J, **a H. Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries. J Mater Chem A. 2021;9(11):6861.

    Article  CAS  Google Scholar 

  9. Hao R, Chen J, Wang Z, Zhang J, Gan Q, Wang Y, Li Y, Luo W, Wang Z, Yuan H, Yan C, Zheng W, Huang Y, Liu P, Yan J, Liu K, Liu C, Lu Z. Iron polyphthalocyanine-derived ternary-balanced Fe3O4/Fe3N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction. Sci China Mater. 2021;64:2987.

    Article  CAS  Google Scholar 

  10. Huang X, Shen T, Zhang T, Qiu H, Gu X, Ali Z, Hou Y. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv Energy Mater. 2020;10(11):1900375.

    Article  CAS  Google Scholar 

  11. Shang C, Yang M, Wang Z, Li M, Liu M, Zhu J, Zhu Y, Zhou L, Cheng H, Gu Y, Tang Y, Zhao X, Lu Z. Encapsulated MnO in N-do** carbon nanofibers as efficient ORR electrocatalysts. Sci China Mater. 2017;60(10):937.

    Article  CAS  Google Scholar 

  12. Hao R, Gu S, Chen J, Wang Z, Gan Q, Wang Z, Huang Y, Liu P, Zhang K, Liu K, Liu C, Lu Z. Microporous Fe-N4 cataysts derived from biomass aerogel for a high-performance Zn-air battery. Mater Today Energy. 2021;21:100826.

    Article  CAS  Google Scholar 

  13. Cao L, Yang M, Lu Z, Pan H. Exploring an effective oxygen reduction reaction catalyst via 4e- process based on waved-graphene. Sci China Mater. 2017;60(8):739.

    Article  CAS  Google Scholar 

  14. Huang X, Zhang Y, Shen H, Li W, Shen T, Ali Z, Tang T, Guo S, Sun Q, Hou Y. N-doped carbon nanosheet networks with favorable active sites triggered by metal nanoparticles as bifunctional oxygen electrocatalysts. ACS Energy Lett. 2018;3(12):2914.

    Article  CAS  Google Scholar 

  15. Hao R, Chen J, Wang Z, Huang Y, Liu P, Yan J, Liu K, Liu C, Lu Z. Trimetallic zeolitic imidazolite framework-derived Co nanoparticles@CoFe-nitrogen-doped porous carbon as bifunctional electrocatalysts for Zn-air battery. J Colloid Interface Sci. 2021;586:621.

    Article  CAS  Google Scholar 

  16. Wu S, Zhu Y, Huo Y, Luo Y, Zhang L, Wan Y, Nan B, Cao L, Wang Z, Li M, Yang M, Cheng H, Lu Z. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci China Mater. 2017;60(7):654.

    Article  CAS  Google Scholar 

  17. Qiao MF, Wang Y, Li L, Hu GZ, Zou GA, Mamat X, Dong YM, Hu X. Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Met. 2020;39(7):824.

    Article  CAS  Google Scholar 

  18. Huang K, Zhang W, Li J, Fan Y, Yang B, Rong C, Qi J, Chen W, Yang J. In situ anchoring of zeolite imidazole framework-derived Co, N-doped porous carbon on multiwalled carbon nanotubes toward efficient electrocatalytic oxygen reduction. ACS Sustain Chem Eng. 2020;8(1):478.

    Article  CAS  Google Scholar 

  19. **ang D, Bo X, Gao X, Du C, Li P, Zhu L, Chen W. Bimetal- and nitrogen-codoped spherical porous carbon with efficient catalytic performance towards oxygen reduction reaction in alkaline media. J Colloid Interf Sci. 2019;534:655.

    Article  CAS  Google Scholar 

  20. Zhang R, He S, Lu Y, Chen W. Fe Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. J Mater Chem A. 2015;3(7):3559.

    Article  CAS  Google Scholar 

  21. Peng Y, Lu B, Chen S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater. 2018;30(48):1801995.

    Article  CAS  Google Scholar 

  22. Chen Z, Wu R, Liu Y, Ha Y, Guo Y, Sun D, Liu M, Fang F. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv Mater. 2018;30(30):1802011.

    Article  CAS  Google Scholar 

  23. Du C, Gao Y, Chen H, Li P, Zhu S, Wang J, He Q, Chen W. A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. J Mater Chem A. 2020;8(33):16994.

    Article  CAS  Google Scholar 

  24. Du C, Gao Y, Wang J, Chen W. A new strategy for engineering a hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn–air batteries. J Mater Chem A. 2020;8(19):9981.

    Article  CAS  Google Scholar 

  25. Zhang M, Qiu JJ, Yin T, Tan CL. Research progress and application prospect of silver nanoparticles and nanoporous silver materials. Chin J Rare Met. 2020;44(1):79.

    Google Scholar 

  26. Chen Y, Gao R, Ji S, Li H, Tang K, Jiang P, Hu H, Zhang Z, Hao H, Qu Q, Liang X, Chen W, Dong J, Wang D, Li Y. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew Chem Int Ed. 2021;60(6):3212.

    Article  CAS  Google Scholar 

  27. **a H, Qu G, Yin H, Zhang J. Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. J Mater Chem A. 2020;8(31):15358.

    Article  CAS  Google Scholar 

  28. Shang H, Jiang Z, Zhou D, Pei J, Wang Y, Dong J, Zheng X, Zhang J, Chen W. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem Sci. 2020;11(23):5994.

    Article  CAS  Google Scholar 

  29. Zhao X, Li YG. Two-electron oxygen reduction reaction by high-loading molybdenum single-atom catalysts. Rare Met. 2020;39(5):455.

    Article  CAS  Google Scholar 

  30. Peng L, Shang L, Zhang T, Waterhouse G. Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc-air batteries. Adv Energy Mater. 2020;10(48):2003018.

    Article  CAS  Google Scholar 

  31. Hou CC, Zou L, Sun L, Zhang K, Liu Z, Li Y, Li C, Zou R, Yu J, Xu Q. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew Chem Int Ed. 2020;59(19):7384.

    Article  CAS  Google Scholar 

  32. Wei X, Zheng D, Zhao M, Chen H, Fan X, Gao B, Gu L, Guo Y, Qin J, Wei J, Zhao Y, Zhang G. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angew Chem Int Ed. 2020;59(34):14639.

    Article  CAS  Google Scholar 

  33. Zhang H, Liu G, Shi L, Ye J. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater. 2018;8(1):1701343.

    Article  CAS  Google Scholar 

  34. Lang R, ** W, Liu JC, Cui YT, Li T, Lee AF, Chen F, Chen Y, Li L, Li L, Lin J, Miao S, Liu X, Wang AQ, Wang X, Luo J, Qiao B, Li J, Zhang T. Non defect-stabilized thermally stable single-atom catalyst. Nat Commun. 2019;10:234.

    Article  CAS  Google Scholar 

  35. Liu JC, Tang Y, Wang YG, Zhang T, Li J. Theoretical understanding of the stability of single-atom catalysts. Nat Sci Rev. 2018;5(5):638.

    Article  CAS  Google Scholar 

  36. Yang HB, Hung S-F, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang HY, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen HM, Li CM, Zhang T, Liu B. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy. 2018;3:140.

    Article  CAS  Google Scholar 

  37. Tian H, Cui X, Dong H, Meng G, Kong F, Chen Y, Peng L, Chen C, Chang Z, Shi J. Enginering single MnN4 atomic active sites on polydopamine-modified helical carbon tubes towards efficient oxygen reduction. Energy Storage Mater. 2021;37:274.

    Article  Google Scholar 

  38. Zhang S, Yang W, Liang Y, Yang X, Cao M, Cao R. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries. Appl Catal B Environ. 2021;285:119780.

    Article  CAS  Google Scholar 

  39. Han J, Bao H, Wang JQ, Zheng L, Sun S, Wang ZL, Sun C. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl Catal B Environ. 2021;280:119411.

    Article  CAS  Google Scholar 

  40. Li H, Du K, **ang C, An P, Shu X, Dang Y, Wu C, Wang J, Du W, Zhang J, Li S, Tian H, Wang S, **a H. Controlled chelation between tannic acid and Fe precursors to obtain N, S co-doped carbon with high density Fe-single atom-nanoclusters for highly efficient oxygen reduction reaction in Zn–air batteries. J Mater Chem A. 2020;8(33):17136.

    Article  CAS  Google Scholar 

  41. Chen F, Wu XL, Shi C, Lin H, Chen J, Shi Y, Wang S, Duan X. Molecular engineering toward pyrrolic N-rich M-N4 (M = Cr, Mn, Fe Co, Cu) single-atom sites for enhanced heterogeneous fenton-like reaction. Adv Funct Mater. 2021;31(13):2007877.

    Article  CAS  Google Scholar 

  42. Li Y, Zhou W, Zheng L, Liu J, Tang R, Shi K, Zhang Y. Hollow porous nitrogen-doped carbon formed by Fe-modified bimetallic organic framework for rechargeable liquid/solid Zn-air batteries. J Alloys Compd. 2021;886:161227.

    Article  CAS  Google Scholar 

  43. Wang L, Liang K, Deng L, Liu YN. Protein hydrogel networks: a unique approach to heteroatom self-doped hierarchically porous carbon structures as an efficient ORR electrocatalyst inboth basic and acidic conditions. Appl Catal B: Environ. 2019;246:89.

    Article  CAS  Google Scholar 

  44. Gu S, He J, Zhu Y, Wang Z, Chen D, Yu G, Pan C, Guan J, Tao K. Facile carbonization of microporous organic polymers into hierarchically porous carbons targeted for effective CO2 uptake at low pressures. ACS Appl Mater Interf. 2016;8(28):18383.

    Article  CAS  Google Scholar 

  45. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Carbon-based supercapacitors produced by activation of graphen. Science. 2011;332(6037):1537.

    Article  CAS  Google Scholar 

  46. Bill E, Bothe E, Chaudhuri P, Chlopek K, Herebian D, Kokatam S, Ray K, Weyhermüller T, Neese F, Wieghardt K. Molecular and electronic structure of four- and five-coordinate cobalt complexes containing two o-phenylenediamine- or two o-aminophenol-type ligands at various oxidation levels: an experimental, density functional, and correlated ab initio study. Chem Eur J. 2005;11(1):204.

    Article  CAS  Google Scholar 

  47. Leng D, Tang H, Yang M, Zhang J, Zhang Y, Qin J, Liu Q, Lu H, Yin F. Co/N-doped carbon nanotubes-grafted porous carbon sheets architecture as efficient electrocatalyst for oxygen reduction reaction. J Alloys Compd. 2021;871:159566.

    Article  CAS  Google Scholar 

  48. Wang ZY, Jiang SD, Duan CQ, Wang D, Luo SH, Liu YG. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Met. 2020;39(12):1383.

    Article  CAS  Google Scholar 

  49. Wang Z, Shen J, Ji S, Xu X, Zuo S, Liu Z, Zhang D, Hu R, Ouyang L, Liu J, Zhu M. B, N codoped graphitic nanotubes loaded with Co nanoparticles as superior sulfur host for advanced Li-S batteries. Small. 2020;16(7):1906634.

    Article  CAS  Google Scholar 

  50. Pan Y, Lin R, Chen Y, Liu S, Zhu W, Cao X, Chen W, Wu K, Cheong WC, Wang Y, Zheng L, Luo J, Lin Y, Liu Y, Liu C, Li J, Lu Q, Chen X, Wang D, Peng Q, Chen C, Li Y. Design of single-atom Co−N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc. 2018;140(12):4218.

    Article  CAS  Google Scholar 

  51. **e X, He C, Li B, He Y, Cullen DA, Wegener EC, Kropf AJ, Martinez U, Cheng Y, Engelhard MH, Bowden ME, Song M, Lemmon T, Li XS, Nie Z, Liu J, Myers DJ, Zelenay P, Wang G, Wu G, Ramani V, Shao Y. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat Catal. 2020;3:1044.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21875097), the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (Nos. JCYJ20200109141640095 and No. JCYJ20190809115413414), Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (No. ZDSYS20200421111401738), the Leading Talents of Guangdong Province Program (No. 2016LJ06C536) and Guangdong-Hong Kong-Macao Joint Laboratory (No. 2019B121205001). This work was also partially supported by Hong Kong Research Grants Council (No. CityU 11218420). TEM and HAADF-STEM images were collected on the instruments from the Southern University of Science and Technology Core Research Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-Guang Lu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JJ., Gu, S., Hao, R. et al. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Met. 41, 2055–2062 (2022). https://doi.org/10.1007/s12598-022-01974-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01974-7

Navigation