Log in

Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Develo** alternative oxygen reduction reaction (ORR) catalysts to replace precious Pt-based metals with abundant materials is the key challenge of commercial application of fuel cells. Owing to their various compositions and tunable electronic properties, transition metal dichalcogenides (TMDs) have the great potential to realize high-efficiency catalysts for ORR. Here, various 3R-phase dichalcogenides of group VB and VIB transition metals (MX2, M = Nb, Ta, Mo, W; X = S, Se, Te) are investigated for ORR catalysts by using density functional theory calculations. The computed over-potentials of group VB TMDs are much less than those of group VIB TMDs. For group VB TMDs, a volcano-type plot of ORR catalytic activity is established on the adsorption energies of *OH, and NbS2 and TaTe2 exhibit best ORR activity with an over-potential of 0.54 V. To achieve even better activity, strain engineering is performed to tune ORR catalytic activity, and the minimum over-potential of 0.43 V can be realized. We further demonstrate that the shift of p orbital center of surface chalcogen elements under strain is responsible for tuning the catalytic activity of TMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    Article  Google Scholar 

  2. Wu, J. B.; Yang, H. Platinum–based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

    Article  Google Scholar 

  3. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  Google Scholar 

  4. Zou, L. L.; Fan, J.; Zhou, Y.; Wang, C. M.; Li, J.; Zou, Z. Q.; Yang, H. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol–tolerant oxygen reduction reactions. Nano Res. 2015, 8, 2777–2788.

    Article  Google Scholar 

  5. Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core–shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  6. Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2012, 2, 1654–1660.

    Article  Google Scholar 

  7. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  Google Scholar 

  8. Bai, S.; Wang, C. M.; Jiang, W. Y.; Du, N. N.; Li, J.; Du, J. T.; Long, R.; Li, Z. Q.; **ong, Y. J. Etching approach to hybrid structures of PtPd nanocages and graphene for efficient oxygen reduction reaction catalysts. Nano Res. 2015, 8, 2789–2799.

    Article  Google Scholar 

  9. De Bruijn, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3–22.

    Article  Google Scholar 

  10. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen–and hydrogen–involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  Google Scholar 

  11. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen–doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

    Article  Google Scholar 

  12. Zhang, J. T.; Zhao, Z. H.; **a, Z. H.; Dai, L. M. A metal–free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

    Article  Google Scholar 

  13. Zou, X. L.; Wang, L. Q.; Yakobson, B. I. Mechanisms of the oxygen reduction reaction on B–and/or N–doped carbon nanomaterials with curvature and edge effects. Nanoscale 2018, 10, 1129–1134.

    Article  Google Scholar 

  14. Yan, D. F.; Guo, L.; **e, C.; Wang, Y. Y.; Li, Y. X.; Li, H.; Wang, S. Y. N, P–dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Sci. China Mater. 2018, 61, 679–685.

    Article  Google Scholar 

  15. Ma, R. G.; Ren, X. D.; **a, B. Y.; Zhou, Y.; Sun, C.; Liu, Q.; Liu, J. J.; Wang, J. C. Novel synthesis of N–doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 2016, 9, 808–819.

    Article  Google Scholar 

  16. Shen, M. X.; Wei, C. T.; Ai, K. L.; Lu, L. H. Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Res. 2017, 10, 1449–1470.

    Article  Google Scholar 

  17. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N–coordinated dualmetal sites: A stable and active Pt–free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  Google Scholar 

  18. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron–and nitrogen–doped graphene materials. Nat. Mater. 2015, 14, 937–942.

    Article  Google Scholar 

  19. Song, K.; Long, Y.; Wang, X.; Zhou, G. Theoretical investigations of transport properties of organic solvents in cation–functionalized graphene oxide membranes: Implications for drug delivery. Nano Res. 2018, 11, 254–263.

    Article  Google Scholar 

  20. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High–performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  21. Shang, C. Q.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Liu, M.; Zhu, J.; Zhu, Y. G.; Zhou, L. J.; Cheng, H.; Gu, Y. Y. et al. Encapsulated MnO in N–do** carbon nanofibers as efficient ORR electrocatalysts. Sci. China Mater. 2017, 60, 937–946.

    Article  Google Scholar 

  22. Liao, W. X.; Zhou G. Conditions for magnetic and electronic properties of ultrathin Ni–Fe hydroxide nanosheets as catalysts: A DFT+U study. Sci. China Mater. 2017, 60, 664–673.

    Article  Google Scholar 

  23. Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non–precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

    Article  Google Scholar 

  24. Eng, A. Y. S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M. Electrochemistry of transition metal dichalcogenides: Strong dependence on the metalto–chalcogen composition and exfoliation method. ACS Nano 2014, 8, 12185–12198.

    Article  Google Scholar 

  25. Huang, H.; Feng, X.; Du, C. C.; Song, W. B. High–quality phosphorusdoped MoS2 ultrathin nanosheets with amenable ORR catalytic activity. Chem. Commun. 2015, 51, 7903–7906.

    Article  Google Scholar 

  26. Huang, H.; Feng, X.; Du, C.; Wu, S.; Song, W. Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis. J. Mater. Chem. A 2015, 3, 16050–16056.

    Article  Google Scholar 

  27. Zhang, H. Y.; Tian, Y.; Zhao, J. X.; Cai, Q. H.; Chen, Z. F. Small dopants make big differences: Enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N–and P–do**. Electrochim. Acta 2017, 225, 543–550.

    Article  Google Scholar 

  28. Wang, Z. X.; Zhao, J. X.; Cai, Q. H.; Li, F. Y. Computational screening for high–activity MoS2 monolayer–based catalysts for the oxygen reduction reaction via substitutional do** with transition metal. J. Mater. Chem. A 2017, 5, 9842–9851.

    Article  Google Scholar 

  29. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  Google Scholar 

  30. Ling, T.; Yan, D. Y.; Wang, H.; Jiao, Y.; Hu, Z. P.; Zheng, Y.; Zheng, L. R.; Mao, J.; Liu, H.; Du, X. W. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509.

    Article  Google Scholar 

  31. Noh, S. H.; Han, B.; Ohsaka, T. First–principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction. Nano Res. 2015, 8, 3394–3403.

    Article  Google Scholar 

  32. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice–strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    Article  Google Scholar 

  33. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  Google Scholar 

  34. Luxa, J.; Mazánek, V.; Pumera, M.; Lazar, P.; Sedmidubský, D.; Callisti, M.; Polcar, T.; Sofer, Z. 2H→1T Phase Engineering of layered tantalum disulfides in electrocatalysis: Oxygen reduction reaction. Chem.–Eur. J. 2017, 23, 8082–8091.

    Article  Google Scholar 

  35. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two–dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  36. Toh, R. J.; Sofer, Z.; Luxa, J.; Sedmidubský, D.; Pumera, M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. 2017, 53, 3054–3057.

    Article  Google Scholar 

  37. Feng, Y.; Gong, S. J.; Du, E. W.; Chen, X. F.; Qi, R. J.; Yu, K.; Zhu, Z. Q. 3R TaS2 surpasses the corresponding 1T and 2H phases for the hydrogen evolution reaction. J. Phys. Chem. C 2018, 122, 2382–2390.

    Article  Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficiency of ab–initio total energy calculations for metals and semiconductors using a plane–wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  39. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented–wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

    Article  Google Scholar 

  41. Grimme, S. Semiempirical GGA–type density functional constructed with a long–range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  42. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel–cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  43. Choi, C. H.; Lim, H. K.; Chung, M. W.; Park, J. C.; Shin, H.; Kim, H.; Woo, S. I. Long–range electron transfer over graphene–based catalyst for high–performing oxygen reduction reactions: Importance of size, N–do**, and metallic impurities. J. Am. Chem. Soc. 2014, 136, 9070–9077.

    Article  Google Scholar 

  44. Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217.

    Article  Google Scholar 

  45. Che, M. Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis. Catal. Today 2013, 218–219, 162–171.

    Article  Google Scholar 

  46. Vojvodic, A.; Hellman, A.; Ruberto, C.; Lundqvist, B. I. From electronic structure to catalytic activity: A single descriptor for adsorption and reactivity on transition–metal carbides. Phys. Rev. Lett. 2009, 103, 146103.

    Article  Google Scholar 

  47. Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano–particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–231.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0701600), the National Natural Science Foundation of China (Nos. 11874036, 51622103, and 21573123), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2017BT01N111), Shenzhen Projects for Basic Research (No. JCYJ20170412171430026), and the National Program for Thousand Young Talents of China. Tian** Supercomputing Center is also acknowledged for allowing the use of computational resources including TIANHE-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aolong Zou, Lin Gan or Jia Li.

Electronic supplementary material

12274_2019_2326_MOESM1_ESM.pdf

Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Wang, K., Zou, X. et al. Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Res. 12, 925–930 (2019). https://doi.org/10.1007/s12274-019-2326-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2326-7

Keywords

Navigation