Log in

Na2SO4-Deposit-Induced Corrosion of Mo-Containing Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Disk alloys used in advanced gas turbine engines often contain significant amounts of Mo (2 wt% or greater), which is known to cause corrosion under Type I hot corrosion conditions (at temperatures around 900 °C) due to alloy-induced acidic fluxing. The corrosion resistance of several model and commercial Ni-based disk alloys with different amounts of Mo with and without Na2SO4 deposit was examined at 700 °C in air and in SO2-containing atmospheres. When coated with Na2SO4 those alloys with 2 wt% or more Mo showed degradation products similar to those observed previously in Mo-containing alloys, which undergo alloy-induced acidic fluxing Type I hot corrosion even though the temperatures used in the present study were in the Type II hot corrosion range. Extensive degradation was observed even after exposure in air. The reason for the observed degradation is the formation of sodium molybdate. Transient molybdenum oxide reacts with the sodium sulfate deposit to form sodium molybdate which is molten at the temperature of study, i.e., 700 °C, and results in a highly acidic melt at the salt alloy interface. This provides a negative solubility gradient for the oxides of the alloying elements, which results in continuous fluxing of otherwise protective oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Encinas-Oropesa, N. J. Simms, J. R. Nicholls, G. L. Drew, J. Leggett and M. C. Hardy, Materials at High Temperatures 26, 241 (2009).

    Article  Google Scholar 

  2. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals (Chap. 8), 2nd ed, (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  3. J. A. Goebel and F. S. Pettit, Metallurgical Transactions 1, 1943 (1970).

    Article  Google Scholar 

  4. R. A. Rapp, Corrosion 42, 568 (1986).

    Article  Google Scholar 

  5. R. A. Rapp and K. S. Goto, The Hot Corrosion of Metals by Molten Salts. in Molten Salts, eds. J. Braunstein and J. R. Selman (Electrochemical Society, Pennington, 1981), p. 81.

    Google Scholar 

  6. K. L. Luthra, Metallurgical Transactions A 13, 1843 (1982).

    Article  Google Scholar 

  7. N. S. Bornstein, M. A. DeCrescente and H. A. Roth, Accelerated Corrosion in Gas Turbine Engines, in Gas Turbine Materials Conference, Vol. 3 (1972).

  8. J. A. Goebel, F. S. Pettit and G. W. Goward, Metallurgical Transactions 4, 261 (1973).

    Article  Google Scholar 

  9. G. C. Fryburg, F. J. Kohl, C. A. Stearns and W. L. Fielder, Journal of the Electrochemical Society 129, 571 (1982).

    Article  Google Scholar 

  10. J. A. Goebel and F. S. Pettit, Metallurgical Transactions 1, 3421 (1970).

    Article  Google Scholar 

  11. K. L. Luthra and D. A. Shores, Journal of the Electrochemical Society 127, 2202 (1980).

    Article  Google Scholar 

  12. M. C. Hardy, B. Zirbel, G. Shen and R. Shankar, Develo** Damage Tolerance and Creep Resistance in a High Strength Nickel Alloy for Disc Applications. in Superalloys 2004, eds. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra and S. Walston (TMS, Warrendale, 2004), p. 83.

    Chapter  Google Scholar 

  13. D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 267 (1996).

    Article  Google Scholar 

  14. O. P. Watt, Transactions of the American Electrochemical Society 29, 395 (1916).

    Google Scholar 

  15. A. K. Misra, Journal of the Electrochemical Society 133, 1029 (1986).

    Article  Google Scholar 

  16. K. L. Luthra, Metallurgical Transactions A 13, 1853 (1982).

    Article  Google Scholar 

  17. K. T. Chiang, F. S. Pettit and G. H. Meier, Low Temperature Hot Corrosion. in High Temperature Corrosion, NACE-6, ed. R. A. Rapp (National Society of Corrosion Engineers, Houston, 1983), p. 519.

    Google Scholar 

  18. A. K. Misra, Journal of the Electrochemical Society 133, 1038 (1986).

    Article  Google Scholar 

  19. J. Kuepper and R. A. Rapp, Werkstoffe und Korrosion 38, 674 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Office of Naval Research for support of their participation in this collaboration under ONR Contract N00014-10-1-0661, David A. Shifler, Scientific Monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Meier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animals Rights

There were no human participants or animals in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutz, B.S., Alvarado-Orozco, J.M., Garcia-Fresnillo, L. et al. Na2SO4-Deposit-Induced Corrosion of Mo-Containing Alloys. Oxid Met 88, 599–620 (2017). https://doi.org/10.1007/s11085-017-9746-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9746-0

Keywords

Navigation