Log in

High Temperature Corrosion of Ni-Cr Alloys Exposed to Calcium Oxide

  • Environmental Stability of Materials and Coatings at High Temperatures
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 06 November 2023

This article has been updated

Abstract

Degradation of high temperature gas turbine components caused by calcium-rich deposits can lead to exposure of the underlying alloy. Understanding the response of key alloying elements such as chromium to these deposits at high temperatures is critical. In this study, model binary Ni-5 Cr, Ni-10 Cr and Ni-18 Cr alloys (all in wt.%) were exposed to a calcium oxide film at 900°C, 1000°C and 1100°C for 50 h. An outer layer of nickel oxide, inner Cr2O3 scale and an intermediate layer of calcium chromate formed on the Ni-10 Cr and Ni-18 Cr alloys, whereas the Cr2O3 scale was not formed in the Ni-5 Cr alloy. The amount of chromium in the Ni-18 Cr alloy resulted in the formation of a banded structure containing significant amounts of calcium chromates. At 900°C, increasing the Cr content resulted in a thinner oxide scale, while at 1000°C and 1100°C, the external scale thickness increased with Cr content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  1. R.A. Rapp, Corros. Sci. 44, 209 https://doi.org/10.1016/S0010-938X(01)00057-9 (2002).

    Article  Google Scholar 

  2. F. Pettit, Oxid. Met. 76, 1 https://doi.org/10.1007/s11085-011-9254-6 (2011).

    Article  Google Scholar 

  3. R.A. Rapp and N. Otsuka, ECA Trans. 16, 271 https://doi.org/10.1149/1.3159332 (2009).

    Article  Google Scholar 

  4. K. Luthra, Metall. Trans. A 13A, 1843 https://doi.org/10.1007/BF02647841 (1982).

    Article  Google Scholar 

  5. K. Luthra, Metall. Trans. A 13A, 1853 https://doi.org/10.1007/BF02647842 (1982).

    Article  Google Scholar 

  6. D.A. Shifler, Proc. ASME Turbo Expo. 1, 1 https://doi.org/10.1115/GT2017-65281 (2017).

    Article  Google Scholar 

  7. M.B. Krisak, B.I. Bentley, A.W. Phelps, and T.C. Radsick, J. Propuls. Power. 33, 697 https://doi.org/10.2514/1.B35936 (2017).

    Article  Google Scholar 

  8. K.J. Meisner and E.J. Opila, Oxid. Met. 94, 301 https://doi.org/10.1007/s11085-020-09990-7 (2020).

    Article  Google Scholar 

  9. J.L. Smialek, F.A. Archer, and R.G. Garlick, J. Mater. 46, 39 https://doi.org/10.1007/BF03222663 (1994).

    Article  Google Scholar 

  10. R.I. Webster and E.J. Opila, J. Non-Cryst. Solids 584, 121508 https://doi.org/10.1016/j.jnoncrysol.2022.121508 (2022).

    Article  Google Scholar 

  11. R. Kumar, S. Rommel, C. Jiang, and E.H. Jordan, Surf. Coat. Technol. 432, 128039 https://doi.org/10.1016/j.surfcoat.2021.128039 (2022).

    Article  Google Scholar 

  12. C. Levi, J. Hutchinson, M. Vidal-Setif, and C. Johnson, MRS Bull. 37, 932 https://doi.org/10.1557/mrs.2012.230 (2012).

    Article  Google Scholar 

  13. E. Zaleski, C. Ensslen, and C. Levi, J. Am. Ceram. Soc. 98, 1642 https://doi.org/10.1111/jace.13478 (2015).

    Article  Google Scholar 

  14. D. Poerschke, J. Slaw, N. Verma, F. Zok, and C. Levi, Acta Mater. 145, 451 https://doi.org/10.1016/j.actamat.2017.12.004 (2018).

    Article  Google Scholar 

  15. T. Gheno, G.H. Meier, and B. Gleeson, Oxid. Met. 84, 185 https://doi.org/10.1007/s11085-015-9550-7 (2015).

    Article  Google Scholar 

  16. T. Gheno and B. Gleeson, Oxid. Met. 86, 385 https://doi.org/10.1007/s11085-016-9649-5 (2016).

    Article  Google Scholar 

  17. T. Gheno and B. Gleeson, Oxid. Met. 87, 249 https://doi.org/10.1007/s11085-016-9669-1 (2017).

    Article  Google Scholar 

  18. K.T. Chiang, G.H. Meier, and R.A. Perkins, J. Mater. Energy Syst. 6, 71 https://doi.org/10.1007/BF02833417 (1984).

    Article  Google Scholar 

  19. H. Zhao, C.G. Levi, and H.N.G. Wadley, Surf. Coat. Technol. 251, 74 https://doi.org/10.1016/j.surfcoat.2014.04.007 (2014).

    Article  Google Scholar 

  20. D.L. Poerschke and C.G. Levi, J. Eur. Ceram. Soc. 35, 681 https://doi.org/10.1016/j.jeurceramsoc.2014.09.006 (2015).

    Article  Google Scholar 

  21. W.D. Summers, D.L. Poerschke, M.R. Begley, C.G. Levi, and F.W. Zok, J. Am. Ceram. Soc. 103, 5196 https://doi.org/10.1111/jace.17187 (2020).

    Article  Google Scholar 

  22. V. Prostakova, J. Chen, E. Jak, and S.A. Decterov, Calphad Comput. Coupling Phase Diagr. Thermochem. 37, 1 https://doi.org/10.1016/j.calphad.2011.12.009 (2012).

    Article  Google Scholar 

  23. K. Min-seok, Thermodynamic Optimization of the CaO-MgO-Al2O3-SiO2-CrOx System Containing Cr6+ Oxides (M.S. Thesis, Seoul National University, 2021).

  24. M.W. Chase, Jr. NIST-JANAF Thermochemical Tables (American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology, Washington, DC: New York, 1998).

  25. A. Kaiser, B. Sommer, and E. Woermann, J. Am. Ceram. Soc. 75, 1463 https://doi.org/10.1111/j.1151-2916.1992.tb04211.x (1992).

    Article  Google Scholar 

  26. F.P. Glasser and E.F. Osborn, J. Am. Ceram. Soc. 41, 358 https://doi.org/10.1111/j.1151-2916.1958.tb12934.x (1958).

    Article  Google Scholar 

  27. N. Birks, G. Meier, and F. Pettit, High Temperature Oxidation of Metals (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  28. C. Wagner, Z. Electrochem. 63, 772 https://doi.org/10.1002/bbpc.19590630713 (1959).

    Article  Google Scholar 

  29. C. Wagner, J. Electrochem. Soc. 99, 369 https://doi.org/10.1149/1.2779605 (1952).

    Article  Google Scholar 

  30. A. Nicolas, E. Aublant, E. Feulvarch, and K. Wolski, Defect Diffus. Forum. 323–325, 295 https://doi.org/10.4028/www.scientific.net/DDF.323-325.295 (2012).

    Article  Google Scholar 

  31. C. Giggins and F. Pettit, Trans. Met. Soc. AIME. 245, 2495 https://doi.org/10.1007/BF02811822 (1969).

    Article  Google Scholar 

  32. M. Appel and J. Pask, JACS 54, 152 https://doi.org/10.1111/j.1151-2916.1971.tb12244.x (1971).

    Article  Google Scholar 

  33. G.M. Ecer and G.H. Meier, Oxid. Met. 13, 119 https://doi.org/10.1007/BF00611976 (1979).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project from the Office of Naval Research (ONR Award # N00014-21-1-2751; Mr. Anthony C. Smith, Sr., Director, DoN HBCU/MI Program, and Dr. David Shifler, Technical SME/POC), is gratefully acknowledged. The authors thank Harjot Singh, Ulus Ekerman, Logan Gallegos and Lily Pelayo for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilupanur Ravi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

There was a typo in the standard deviation headings in Table 2 of this paper. The original article has been corrected.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2375 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ury, N., Sanchez, K. & Ravi, V. High Temperature Corrosion of Ni-Cr Alloys Exposed to Calcium Oxide. JOM 75, 5451–5465 (2023). https://doi.org/10.1007/s11837-023-06152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06152-3

Navigation