Log in

Low Temperature Hot Corrosion of Cobalt-Base Alloys: Part II. Reaction Mechanism

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This paper presents a mechanism of low-temperature hot corrosion that is based on rapid dissolution of the more noble metal or metal oxide in liquid salts. It is proposed that the rapid degradation of cobalt-base alloys results from dissolution of cobalt or cobalt oxides on the surface, which prevents the formation of a protective Cr2O3 or A12O3 film. The reaction occurs in two stages: (a) an initial stage, during which an Na2SO4-CoSO4 liquid forms on the surface, and (b) a propagation stage, during which SO3 migrates inward and cobalt outward through the molten salt. At longer times, cobalt dissolves at the scale/salt interface and forms Co3O4 and/or CoSO4(s) in different regions of the reaction product. The mechanisms of transport of various reactants and products through the liquid salt and the effects of their relative transport rates on the reaction product morphology have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Wortman, R.E. Fryxell, and I.I. Bessen:Proceedings of the Third Conf. on Gas Turbine Materials in a Marine Environment, session V, paper 11, pp. 1-11, sponsored by U. S. Naval Ship Engineering Center and U. K. Ship Department and held at the University of Bath, England, September 1976, available from U. S. Naval Sea Systems Command, SEA 05231, Washington, DC.

  2. D. J. Wortman, R. E. Fryxell, K. L. Luthra, and P. A. Bergman:Thin Solid Films, 1979, vol. 64, pp. 281–88.

    Article  CAS  Google Scholar 

  3. K. L. Luthra:Metall. Trans. A, 1982, vol. 13A, p. 1843.

    Google Scholar 

  4. A.U. Seybolt:Trans. TMS-AIME, 1968, vol. 242, pp. 1955–61.

    Google Scholar 

  5. N. S. Bornstein and M. A. DeCrescente:Trans. TMS-AIME, 1969, vol. 245, pp. 1947–52.

    CAS  Google Scholar 

  6. J.A. Goebel and F. S. Pettit:Metall. Trans., 1970, vol. 1, pp. 1943–54.

    Article  CAS  Google Scholar 

  7. J.A. Goebel, F. S. Pettit, and G. W. Goward:Metall. Trans., 1973, vol. 4, pp. 261–78.

    CAS  Google Scholar 

  8. R. F. Reising and D. P. Krause:Corrosion, 1974, vol. 30, pp. 131–38.

    CAS  Google Scholar 

  9. J. Stringer and M. E. El-Dahshan:Proceedings of the Second Conf. on Gas Turbine Materials in a Marine Environment, J. W. Fairbanks and I. Machlin, eds., MCIC-75-27, available from NTIS, 1975, p. 161.

  10. J. Stringer and D. P. Whittle:Metal-Slag-Gas Reactions and Processes, Z. A. Foroulis and W. W. Smeltzer, eds., The Electrochemical Society, Princeton, NJ, 1975, p. 665.

    Google Scholar 

  11. D.A. Shores:Corrosion, 1975, vol. 31, pp. 434–40.

    CAS  Google Scholar 

  12. D.W. McKee and G. Romeo:Metall. Trans. A, 1975, vol. 6A, pp. 101–08.

    Google Scholar 

  13. A. J. B. Cutler and C. J. Grant:Metal-Slag-Gas Reactions and Processes, Z. A. Foroulis and W. W. Smeltzer, eds., The Electrochemical Society, Princeton, NJ, 1975, p. 591.

    Google Scholar 

  14. R. A. Rapp and K. S. Goto:Second International Symposium on Molten Salts, J. Braunstein and J.R. Selman, eds., The Electrochemical Society, Pennington, NJ, 1981, pp. 159–71.

    Google Scholar 

  15. D.W. McKee, D.A. Shores, and K. L. Luthra:J. Electrochem. Society, 1978, vol. 125, pp. 411–19.

    Article  CAS  Google Scholar 

  16. C. Spengler and R. Viswanathan:Metall. Trans., 1972, vol. 3, p. 61.

    Google Scholar 

  17. G.C. Fryberg, F. J. Kohl, and C.A. Stearns:Metal-Slag-Gas Reactions and Processes, Z. A. Foroulis and W. W. Smeltzer, eds., The Electrochemical Society, Princeton, NJ, 1975, p. 585.

    Google Scholar 

  18. J. Stringer:Annual Review of Materials Science, R. A. Huggins, ed., Annual Reviews Inc., Palo Alto, CA, 1977, vol. 7, pp. 477–509.

    Google Scholar 

  19. D.A. Shores and W. C. Fang:J. Electrochem. Society, 1981, vol. 128, pp. 346–48.

    Article  CAS  Google Scholar 

  20. I. Barin, O. Knacke, and O. Kubaschewski:Thermochemical Properties of Inorganic Substances, Supplement, Springer-Verlog, Dusseldorf, 1977; I. Barin and O. Knacke:Thermochemical Properties of Inorganic Substances, Springer-Verlog, Dusseldorf, 1973.

  21. JANAF Thermochemical Tables, The Dow Chemical Company, Midland, MI, 1971;Supplement 1974;Supplement 1975.

  22. K. L. Luthra and D. A. Shores:J. Electrochem. Soc, 1980, vol. 127, pp. 2202–10.

    Article  CAS  Google Scholar 

  23. O. Kubaschewski:The Thermodynamic Properties of the Double Oxides, National Physical Laboratory, Teddington, DCS Report 7, November 1970.

    Google Scholar 

  24. K. C. Mills:Thermodynamic Data for Inorganic Sulfides, Selenides and Tellurides, Butterworths, London, 1979, pp. 118–22 and 237-40.

    Google Scholar 

  25. K.T. Jacob, D.B. Rao, and H.G. Nelson:Metall. Trans. A, 1979, vol. 10, pp. 327–31.

    Google Scholar 

  26. A. Klenn: “Transport Properties” inMolten Salt Chemistry, M. Blander, ed., Wiley, New York, NY, 1964, p. 535.

    Google Scholar 

  27. R.E. Andresen:J. Electrochem. Soc, 1979, vol. 126, pp. 328–34.

    Article  CAS  Google Scholar 

  28. L. P. Kostin, L. L. Pluzhnikov, and A. N. Ketov:Russian J. of Phys. Chem., 1975, vol. 49, p. 1313.

    Google Scholar 

  29. K. L. Luthra:Metall. Trans. A, 1982, vol. 13A, p. 1647; K. L. Luthra: TIS No. 80CRD090, Technical Information Exchange, P. O. Box 43, Bldg. 5, General Electric Company, Schenectady, NY 12301.

    Google Scholar 

  30. V. Seshadri and K. Schwerdtfger:Ironmaking and Steelmaking, 1975, vol. 2, pp. 56–60.

    CAS  Google Scholar 

  31. J.D. MacKenzie:Adv. Inorg. Chem. Radiochem., 1962, vol. 4, p. 293.

    CAS  Google Scholar 

  32. K.A. Bol'shakov and P.I. Fedorov:Zhurn. Obch. Khim., 1956, vol. 26, p. 348.

    Google Scholar 

  33. C. Wagner:J. Electrochem. Soc, 1956, vol. 103, pp. 627–33.

    Article  CAS  Google Scholar 

  34. B. H. Kear, F. S. Pettit, D.E. Fomwalt, and L. P. Lemaire:Oxidation of Metals, 1971, vol. 3, pp. 557–69.

    Article  CAS  Google Scholar 

  35. T.R. Ingraham:Trans. TMS-AIME, 1966, vol. 236, pp. 1064-67. 36.|K. L. Luthra and D.A. Shores:Proceedings of the Fourth Conference on Gas Turbine Materials in a Marine Environment, sponsored by U. S. Naval Sea Systems Command and U. K. Ministry of Defense Ship Department and held at Annapolis, MD, June 1979, distributed by U. S. Naval Sea Systems Command, SEA 05231, Washington, DC, pp. 525-42.

  36. K. L. Luthra: “Mechanism of Low Temperature Hot Corrosion,” Proceedings of the International Conference on Corrosion held at San Diego, CA, March 1981, R. A. Rapp, ed., to be published by NACE (National Association of Corrosion Engineers).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luthra, K.L. Low Temperature Hot Corrosion of Cobalt-Base Alloys: Part II. Reaction Mechanism. Metall Trans A 13, 1853–1864 (1982). https://doi.org/10.1007/BF02647842

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647842

Keywords

Navigation