Log in

A Quantitative Structure–Property Relationship Model for Surface Tension Based on Artificial Neural Network

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, an artificial neural network (ANN) model was developed based on molecular descriptors to predict the surface tension of liquids. A dataset containing various features was constructed by collecting experimental data from 25 different fluids and extracting molecular structural descriptors. Feature selection was performed using the forward search wrapper method based on Random Forest, identifying 7 significant features (Temperature, MinAbsEStateIndex, LabuteASA, MolMR, Chi1v, qed and FpDensityMorgan3) for surface tension prediction. Subsequently, an ANN model was constructed with the selected features as inputs to predict the surface tension of liquids. The derived model demonstrates high accuracy with a correlation coefficient (R) exceeding 0.999 and a notably low mean square error (MSE = 1.843e−5). Moreover, the ANN model exhibited a total average absolute deviation (AAD) of 0.98 %, comparable to that of the REFPROP, which had a total AAD of 1.26 %. This quantitative model serves an easy tool for gaining insights into the molecular underpinnings of surface tension and predicting its value across various fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. W.R. Smith, Q.X. Wang, The role of surface tension on the growth of bubbles by rectified diffusion. Ultrason. Sonochem. 98, 106473 (2023). https://doi.org/10.1016/j.ultsonch.2023.106473

    Article  Google Scholar 

  2. B. He, S. Yang, Z. Qin, B. Wen, C. Zhang, Sci. Rep. 7, 1–7 (2017). https://doi.org/10.1038/s41598-017-12189-7

    Article  ADS  Google Scholar 

  3. Y. Ding, L. Jia, L. Yin, C. Dang, X. Liu, J. Xu, Colloids Surf. A 658, 130670 (2023). https://doi.org/10.1016/j.colsurfa.2022.130670

    Article  Google Scholar 

  4. C. Singh, A. Chaudhuri, Nat. Commun. 15, 3704 (2024). https://doi.org/10.1038/s41467-024-47727-1

    Article  ADS  Google Scholar 

  5. R.W. Style, C. Hyland, R. Boltyanskiy, J.S. Wettlaufer, E.R. Dufresne, Nat. Commun. 4, 1–6 (2013). https://doi.org/10.1038/ncomms3728

    Article  Google Scholar 

  6. M. Liu, S. Wang, L. Jiang, Nat. Rev. Mater. (2017). https://doi.org/10.1038/natrevmats.2017.36

    Article  Google Scholar 

  7. S. Park, L. Liu, Ç. Demirkır et al., Nat. Chem. 15, 1532–1540 (2023). https://doi.org/10.1038/s41557-023-01294-y

    Article  Google Scholar 

  8. H. Ragelle, M.W. Tibbitt, S.Y. Wu et al., Nat. Commun. 9, 1–10 (2018). https://doi.org/10.1038/s41467-018-03391-w

    Article  Google Scholar 

  9. C. Miqueu, D. Broseta, J. Satherley, B. Mendiboure, J. Lachaise, A. Graciaa, Fluid Phase Equilib. 172, 169–182 (2000). https://doi.org/10.1016/S0378-3812(00)00384-8

    Article  Google Scholar 

  10. S.M. Hosseini, M. Sadeghi, T. Zarei, J. Mol. Liq. 352, 118629 (2022). https://doi.org/10.1016/j.molliq.2022.118629

    Article  Google Scholar 

  11. I. Cachadiña, J. Tian, A. Mulero, J. Chem. Thermodyn. 110, 201–210 (2017). https://doi.org/10.1016/j.jct.2017.03.001

    Article  ADS  Google Scholar 

  12. A.M. Log, V. Diky, M.L. Huber, Int. J. Thermophys. 44, 110 (2023). https://doi.org/10.1007/s10765-023-03216-z

    Article  ADS  Google Scholar 

  13. H. Moslehi, S.M. Hosseini, M.M. Alavianmehr, Fluid Phase Equilib. 568, 113751 (2023). https://doi.org/10.1016/j.fluid.2023.113751

    Article  Google Scholar 

  14. V. Vinš, B. Planková, J. Hrubý, Int. J. Thermophys. 34, 792–812 (2013). https://doi.org/10.1007/s10765-012-1207-z

    Article  ADS  Google Scholar 

  15. L.M.C. Pereira, A. Chapoy, R. Burgass, B. Tohidi, J. Chem. Thermodyn. 97, 55–69 (2016). https://doi.org/10.1016/j.jct.2015.12.036

    Article  ADS  Google Scholar 

  16. A. Hernández, Int. J. Thermophys. 44, 1–20 (2023). https://doi.org/10.1007/s10765-022-03126-6

    Article  Google Scholar 

  17. G. Di Nicola, M. Moglie, Int. J. Refrig. 34, 1098–1108 (2011). https://doi.org/10.1016/j.ijrefrig.2011.02.008

    Article  Google Scholar 

  18. D. Elustondo, Chem. Phys. 545, 111145 (2021). https://doi.org/10.1016/j.chemphys.2021.111145

    Article  Google Scholar 

  19. T.M. Koller, C. Steininger, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 38, 1–20 (2017). https://doi.org/10.1007/s10765-017-2301-z

    Article  Google Scholar 

  20. K.A.G. Schmidt, G.K. Folas, B. Kvamme, Fluid Phase Equilib. 261, 230–237 (2007). https://doi.org/10.1016/j.fluid.2007.07.045

    Article  Google Scholar 

  21. M. Nabipour, P. Keshavarz, Int. J. Refrig. 75, 217–227 (2017). https://doi.org/10.1016/j.ijrefrig.2016.12.011

    Article  Google Scholar 

  22. Á. Mulero, I. Cachadiña, J.O. Valderrama, Fluid Phase Equilib. 451, 60–67 (2017). https://doi.org/10.1016/j.fluid.2017.07.022

    Article  Google Scholar 

  23. A. Jabbarzadeh, H. Wu, Colloids Surf. A (2024). https://doi.org/10.1016/j.colsurfa.2024.133400

    Article  Google Scholar 

  24. T. Kawahara, T. Imai, T. Okumura, C. Kondou, J. Mol. Liq. 386, 122532 (2023). https://doi.org/10.1016/j.molliq.2023.122532

    Article  Google Scholar 

  25. C.J. Kankanamge, F.D. Lenahan, T. Klein, A.P. Fröba, Int. J. Thermophys. 43, 112 (2022). https://doi.org/10.1007/s10765-022-03038-5

    Article  ADS  Google Scholar 

  26. D. Abooali, M.A. Sobati, Int. J. Refrig. 40, 282–293 (2014). https://doi.org/10.1016/j.ijrefrig.2013.12.007

    Article  Google Scholar 

  27. A. Khajeh, H. Modarress, Int. J. Refrig. 35, 150–159 (2012). https://doi.org/10.1016/j.ijrefrig.2011.08.007

    Article  Google Scholar 

  28. S. Sansare, T. Duran, H. Mohammadiarani, M. Goyal, G. Yenduri, A. Costa, X. Xu, T. O’Connor, D. Burgess, B. Chaudhuri, Int. J. Pharm. 603, 120713 (2021). https://doi.org/10.1016/j.ijpharm.2021.120713

    Article  Google Scholar 

  29. A.M. Kaverin, V.N. Andbaeva, V.G. Baidakov, Russ. J. Phys. Chem. A 80, 413–417 (2006). https://doi.org/10.1134/S0036024406030174

    Article  Google Scholar 

  30. C. Tegeler, R. Span, W. Wagner, J. Phys. Chem. Ref. Data 28, 779–850 (1999). https://doi.org/10.1063/1.556037

    Article  ADS  Google Scholar 

  31. J.C.G. Calado, A.F.S.D.S. Mendonça, B.D.J.V. Saramago, V.A.M. Soares, J. Colloid Interface Sci. 189, 273–282 (1997). https://doi.org/10.1006/jcis.1997.4810

    Article  ADS  Google Scholar 

  32. E.W. Lemmon, R. Span, J. Chem. Eng. Data 51, 785–850 (2006). https://doi.org/10.1021/je050186n

    Article  Google Scholar 

  33. D. Stansfield, Proc. Phys. Soc. 72, 854 (1958). https://doi.org/10.1088/0370-1328/72/5/321

    Article  ADS  Google Scholar 

  34. R. Span, E.W. Lemmon, R.T. Jacobsen, W. Wagner, A. Yokozeki, J. Phys. Chem. Ref. Data 29, 1361–1433 (2000). https://doi.org/10.1063/1.1349047

    Article  ADS  Google Scholar 

  35. J.J. Jasper, J. Phys. Chem. Ref. Data 1, 841 (1972). https://doi.org/10.1063/1.3253106

    Article  ADS  Google Scholar 

  36. R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509–1596 (1996). https://doi.org/10.1063/1.555991

    Article  ADS  Google Scholar 

  37. C. Wohlfarth, Landolt-Börnstein—Group IV Physical Chemistry 24 (2008). https://materials.springer.com/lb/docs/sm_lbs_978-3-540-75508-1_20

  38. U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061–1155 (1991). https://doi.org/10.1063/1.555898

    Article  ADS  Google Scholar 

  39. K. Tanaka, Y. Higashi, Int. J. Refrig. 30, 1368–1373 (2007). https://doi.org/10.1016/j.ijrefrig.2007.04.002

    Article  Google Scholar 

  40. E.W. Lemmon, M.O. McLinden, W. Wagner, J. Chem. Eng. Data 54, 3141–3180 (2009). https://doi.org/10.1021/je900217v

    Article  Google Scholar 

  41. H. Lin, Y.Y. Duan, J. Chem. Eng. Data 48, 1360–1363 (2003). https://doi.org/10.1021/je034093m

    Article  Google Scholar 

  42. A.R. Dorokhov, A.A. Kiriyanenko, A.N. Solov’ev, J. Appl. Mech. Tech. Phys. 10, 89–92 (1969). https://doi.org/10.1007/BF00916257

    Article  ADS  Google Scholar 

  43. R.T. Jacobsen, S.G. Penoncello, E.W. Lemmon, Fluid Phase Equilib. 80, 45–46 (1992). https://doi.org/10.1016/0378-3812(92)87054-Q

    Article  Google Scholar 

  44. V. Marx, A. Pruss, W. Wagner, Duesseldorf: VDI Verlag, Series 19 (Waermetechnik/Kaeltetechnik), 57 (1992)

  45. A.P. Fröba, S. Will, A. Leipertz, Int. J. Thermophys. 21, 1225–1253 (2000). https://doi.org/10.1023/A:1006689724974

    Article  Google Scholar 

  46. B.A. Younglove, M.O. McLinden, J. Phys. Chem. Ref. Data 23, 731–779 (1994). https://doi.org/10.1063/1.555950

    Article  ADS  Google Scholar 

  47. H.B. Chae, J.W. Schmidt, M.R. Moldover, J. Chem. Eng. Data 35, 6–8 (1990). https://doi.org/10.1021/je00059a002

    Article  Google Scholar 

  48. C. Kondou, R. Nagata, N. Nii, S. Koyama, Y. Higashi, Refrig. Sci. Technol. 53, 538–545 (2015). https://doi.org/10.1016/j.ijrefrig.2015.01.005

    Article  Google Scholar 

  49. M.E. Mondéjar, M.O. McLinden, E.W. Lemmon, J. Chem. Eng. Data 60, 2477–2489 (2015). https://doi.org/10.1021/acs.jced.5b00348

    Article  Google Scholar 

  50. K. Tanaka, Y. Higashi, Int. J. Refrig. 33, 474–479 (2010). https://doi.org/10.1016/j.ijrefrig.2009.10.003

    Article  Google Scholar 

  51. M. Richter, M.O. McLinden, E.W. Lemmon, J. Chem. Eng. Data 56, 3254–3264 (2011). https://doi.org/10.1021/je200369m

    Article  Google Scholar 

  52. R. Akasaka, E.W. Lemmon, J. Chem. Eng. Data 64, 4679–4691 (2019). https://doi.org/10.1021/acs.jced.9b00007

    Article  Google Scholar 

  53. M. Okada, Y. Higashi, Int. J. Thermophys. 16, 791–800 (1995). https://doi.org/10.1007/BF01438864

    Article  ADS  Google Scholar 

  54. B. de Vries, R. Tillner-Roth, H. D. Baehr, 1995. 19th International Congress of Refrigeration, The Hague, The Netherlands, International Institute of Refrigeration, IVa:582–589. https://iifiir.org/en/fridoc/thermodynamic-properties-of-hcfc124-14011

  55. E.W. Lemmon, R.T. Jacobsen, J. Phys. Chem. Ref. Data 34, 69–108 (2005). https://doi.org/10.1063/1.1797813

    Article  ADS  Google Scholar 

  56. M.F. Liu, L.Z. Han, M.S. Zhu, Int. J. Thermophys. 15, 941–948 (1994). https://doi.org/10.1007/BF01447104

    Article  ADS  Google Scholar 

  57. Y.Y. Duan, L. Shi, M.S. Zhu, L.Z. Han, X. Lei, Fluid Phase Equilib. 172, 237–244 (2000). https://doi.org/10.1016/S0378-3812(00)00375-7

    Article  Google Scholar 

  58. R. Heide, Int. J. Refrig. 20, 496–503 (1997). https://doi.org/10.1016/S0140-7007(97)00044-3

    Article  Google Scholar 

  59. R. Tillner-Roth, H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657–729 (1994). https://doi.org/10.1063/1.555958

    Article  ADS  Google Scholar 

  60. Y. Higashi, T. Shibata, J. Chem. Eng. Data 42, 438–440 (1997). https://doi.org/10.1021/je960274v

    Article  Google Scholar 

  61. E.W. Lemmon, R.T. Jacobsen, J. Phys. Chem. Ref. Data 29, 521–552 (2000). https://doi.org/10.1063/1.1318909

    Article  ADS  Google Scholar 

  62. H. Lin, Y.Y. Duan, Int. J. Thermophys. 24, 1495–1508 (2003). https://doi.org/10.1023/B:IJOT.0000004090.64922.63

    Article  ADS  Google Scholar 

  63. S.L. Outcalt, M.O. McLinden, J. Phys. Chem. Ref. Data 25, 605–636 (1996). https://doi.org/10.1063/1.555979

    Article  ADS  Google Scholar 

  64. S. Bi, G. Zhao, J. Wu, Fluid Phase Equilib. 287, 23–25 (2009). https://doi.org/10.1016/j.fluid.2009.09.005

    Article  Google Scholar 

  65. S. Bi, J. Cui, X. Meng, J. Wu, Fluid Phase Equilib. 405, 25–30 (2015). https://doi.org/10.1016/j.fluid.2015.07.010

    Article  Google Scholar 

  66. H. Qi, D. Fang, K. Gao, X. Meng, J. Wu, Int. J. Thermophys. 37, 55 (2016). https://doi.org/10.1007/s10765-016-2061-1

    Article  ADS  Google Scholar 

  67. M. Okada, T. Arima, M. Hattori, K. Watanabe, J. Chem. Eng. Data 33, 399–401 (1988). https://doi.org/10.1021/je00054a003

    Article  Google Scholar 

  68. A. Kamei, S.W. Beyerlein, R.T. Jacobsen, J. Phys. Chem. Ref. Data 16, 1155–1164 (1995). https://doi.org/10.1007/BF02081283

    Article  Google Scholar 

  69. S.G. Penoncello, E.W. Lemmon, R.T. Jacobsen, Z. Shan, J. Phys. Chem. Ref. Data 32, 1473–1499 (2003). https://doi.org/10.1063/1.1559671

    Article  ADS  Google Scholar 

  70. H. Lin, Y.Y. Duan, Z.W. Wang, Fluid Phase Equilib. 214, 79–86 (2003). https://doi.org/10.1016/S0378-3812(03)00316-9

    Article  Google Scholar 

  71. J. Pan, X. Rui, X. Zhao, L. Qiu, Fluid Phase Equilib. 321, 10–16 (2012). https://doi.org/10.1016/j.fluid.2012.02.012

    Article  Google Scholar 

  72. R. Akasaka, Y. Zhou, E.W. Lemmon, J. Phys. Chem. Ref. Data 44, 013104 (2015). https://doi.org/10.1063/1.4913493

    Article  ADS  Google Scholar 

  73. R. Tillner-Roth, A. Yokozeki, J. Phys. Chem. Ref. Data 26, 1273–1328 (1997). https://doi.org/10.1063/1.556002

    Article  ADS  Google Scholar 

  74. M.S. Zhu, C.X. Lu, J. Chem. Eng. Data 39, 205–206 (1994). https://doi.org/10.1021/je00014a003

    Article  Google Scholar 

  75. D. Bücker, W. Wagner, J. Phys. Chem. Ref. Data 35, 929–1019 (2006). https://doi.org/10.1063/1.1901687

    Article  ADS  Google Scholar 

  76. S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, Nucleic Acids Res. 47, D1102–D1109 (2019). https://doi.org/10.1093/nar/gky1033

    Article  Google Scholar 

  77. G.Landrum, ACS fall national meeting and exposition aug sandiego. https://www.morressier.com/o/event/5fc6445603137aa5258c485b/article/5fc645232d78d1fec467580d

  78. R. Winter, F. Montanari, F. Noé, D.A. Clevert, Chem. Sci. 10, 1692–1701 (2019). https://doi.org/10.1039/c8sc04175j

    Article  Google Scholar 

  79. W. Qian et al., FirePhysChem 3, 339–349 (2023). https://doi.org/10.1016/j.fpc.2023.04.002

    Article  Google Scholar 

  80. P. Labute, A widely applicable set of descriptors. J. Mol. Graph. 18, 464–477 (2000). https://doi.org/10.1016/S1093-3263(00)00068-1

    Article  Google Scholar 

  81. S.A. Wildman, G.M. Crippen, J. Chem. Inf. Comput. Sci. 39, 868–873 (1999). https://doi.org/10.1021/ci990307l

    Article  Google Scholar 

  82. H.H. Lowell, B.K. Lemont, Rev. Comput. Chem. (1991). https://doi.org/10.1002/9780470125793.ch9

    Article  Google Scholar 

  83. J. Yang, Y. Cai, K. Zhao, H. **e, X. Chen, Drug Discov. Today 27, 103356 (2022). https://doi.org/10.1016/j.drudis.2022.103356

    Article  Google Scholar 

  84. Y. Tian, S. Zhang, H. Yin, A. Yan, Chemom. Intell. Lab. Syst. 196, 103888 (2020). https://doi.org/10.1016/j.chemolab.2019.103888

    Article  Google Scholar 

  85. B. Yang, C. Zeng, L. Wang, Y. Guo, G. Chen, Z. Guo, Y. Chen, D. Li, P. Cao, H. Shu, T. Yu, J. Zhu, Int. J. Hydrog. Energy 46, 22998–23012 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.130

    Article  ADS  Google Scholar 

  86. J. Lagrandeur, S. Poncet, M. Sorin, M. Khennich, Int. J. Therm. Sci. (2019). https://doi.org/10.1016/j.ijthermalsci.2019.106097

    Article  Google Scholar 

  87. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, National Institute of Standards and Technology, Standard Reference Data Program, Gaith. https://www.nist.gov/srd/refprop

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Nos. 52276020, 52376212).

Author information

Authors and Affiliations

Authors

Contributions

N.G. designed research; N.L. performed research; N.G., N.L., X.H.W., and G.M.C. analyzed data; N.L., X.H.W., and N.G. wrote the paper.

Corresponding author

Correspondence to Neng Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  1. 1.

    The mapminmax struct for inputs

    name

    'mapminmax'

    xrows

    7

    xmax

    [423.1500;6;50.6279;21.5490;2.1649;0.4895;2]

    xmin

    [28.6300;0;8.7393;0;0;0.3516;0.8889]

    xrange

    [394.5200;6;41.88862;21.5490;2.1649;0.1379;1.1111]

    yrows

    7

    ymax

    1

    ymin

    0

    yrange

    1

    gain

    [0.0025;0.16667;0.0239;0.0464;0.4619;7.2502;0.9000]

    xoffset

    [28.6300;0;8.7393;0;0;0.3516;0.8889]

    no_change

    0

  2. 2.

    The mapminmax struct for output

    name

    'mapminmax'

    xrows

    1

    xmax

    25.9000

    xmin

    0.3800

    xrange

    25.5200

    yrows

    1

    ymax

    1

    ymin

    0

    yrange

    1

    gain

    0.0392

    xoffset

    0.3800

    no_change

    0

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Wang, X., Gao, N. et al. A Quantitative Structure–Property Relationship Model for Surface Tension Based on Artificial Neural Network. Int J Thermophys 45, 106 (2024). https://doi.org/10.1007/s10765-024-03398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03398-0

Keywords

Navigation