Artificial Neural Network and Response Surface Methodology Modelling of Surface Tension of 1-Butyl-3-methylimidazolium Bromide Solution

  • Conference paper
  • First Online:
Smart and Innovative Trends in Next Generation Computing Technologies (NGCT 2017)

Abstract

The thermo-physical properties of the ionic liquids are required for engineering and product design applications in many pharmaceutical and food industries. Among the many unique properties of ionic liquids, their surface tension plays an important role for various reasons. In the present study, the aim is to investigate the effect of temperature and concentration on the surface tension of the binary solution of 1-butyl-3-methylimidazolium bromide + water. The concentration of the ionic liquid is varied from 0.1–0.6%w/w and temperature ranges from 302.85–337.45 K. A quadratic mathematical model has been formulated for predicting the surface tension using response surface methodology with central composite rotatable design having a coefficient of determination R2 as 0.9807. In addition, a two-layered feed forward back propagation neural network 2-4-1 is also modelled which provides a better performance when compared to response surface model. The developed ANN model can predict the surface tension with mean square error, root mean square error and percentage absolute average error equal to 0.156, 0.395 and 0.623, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Soman, D.P., Kalaichelvi, P., Radhakrishnan, T.K.: Review on suitability of ionic liquids for heat transfer applications. Emerg. Trends Chem. Eng. 3, 40–51 (2016)

    Google Scholar 

  2. Ghandi, K.: A review of ionic liquids, their limits and applications. Green Sustain. Chem. 4, 44–53 (2014)

    Article  Google Scholar 

  3. Andrade, C.K.Z., Matos, R.A.F., Oliveira, V.B., Duraes, J.A., Sales, M.J.A.: Thermal study and evaluation of new menthol-based ionic liquids as polymeric additives. J. Therm. Anal. Calorim. 99, 539–543 (2010)

    Article  Google Scholar 

  4. Lazzús, J.A.: Estimation of the thermal conductivity λ(T, P) of ionic liquids using a neural network optimized with genetic algorithms. C. R. Chim. 19, 1–9 (2015)

    Google Scholar 

  5. Chen, Y.F., Hu, Y.F., Yang, Z.Y., Qi, J.G., Yin, L.Y., Zhang, H.R., Huang, H.Z., Liu, X.M.: Prediction of density, viscosity, and conductivity of the ternary aqueous solutions of piperidinium-based ionic liquids at different temperatures and atmospheric pressure using the data of their binary subsystems. Fluid Phase Equilib. 383, 55–71 (2014)

    Article  Google Scholar 

  6. Hezave, A.Z., Raeissi, S., Lashkarbolooki, M.: Estimation of thermal conductivity of ionic liquids using a perceptron neural network. Ind. Eng. Chem. Res. 51, 9886–9893 (2012)

    Article  Google Scholar 

  7. Tariq, M., Freire, M.G., Saramago, B., Coutinho, J.A.P., Lopes, J.N.C., Rebelo, L.P.N.: Surface tension of ionic liquids and ionic liquid solutions. Chem. Soc. Rev. 41, 829–868 (2012)

    Article  Google Scholar 

  8. Mousazadeh, M.H., Faramarzi, E.: Corresponding states theory for the prediction of surface tension of ionic liquids. Ionics (Kiel) 17, 217–222 (2011)

    Article  Google Scholar 

  9. Atashrouz, S., Amini, E., Pazuki, G.: Modeling of surface tension for ionic liquids using group method of data handling. Ionics (Kiel) 21, 1595–1603 (2014)

    Article  Google Scholar 

  10. Lashkarbolooki, M.: Artificial neural network modeling for prediction of binary surface tension containing ionic liquid. Sep. Sci. Technol. 52, 1454–1467 (2017)

    Article  Google Scholar 

  11. Valderrama, J.O., Martinez, G., Faúndez, C.A.: Heat capacity of ionic liquids using artificial neural networks and the concept of mass connectivity. Int. J. Thermophys. 32, 942–956 (2011)

    Article  Google Scholar 

  12. Muthamizhi, K., Kalaichelvi, P., Powar, S.T., Jaishree, R.: Investigation and modelling of surface tension of power-law fluids. RSC Adv. 4, 9771–9776 (2014)

    Article  Google Scholar 

  13. Yildirim, O.E., Xu, Q., Basaran, O.A.: Analysis of the drop weight method. Phys. Fluids 17, 1–13 (2005)

    Article  Google Scholar 

  14. Morgan, J.L.R.: The drop weight method for the determination of the surface tension of a liquid. J. Am. Chem. Soc. 37, 1461–1467 (1915)

    Article  Google Scholar 

  15. Biniaz, P., Farsi, M., Rahimpour, M.R.: Demulsification of water in oil emulsion using ionic liquids: statistical modeling and optimization. Fuel 184, 325–333 (2016)

    Article  Google Scholar 

  16. Abdullah, S.B., Man, Z., Bustam, M.: An optimization study via response surface methodology in extracting of Benzothiophene and Xylene from n-C12 using 1-Hexyl-3-Methylimidazolium Tetrafluoroborate ionic liquid. J. Appl. Sci. 14, 1008–1015 (2014)

    Article  Google Scholar 

  17. Najafi-Marghmaleki, A., Khosravi-Nikou, M.R., Barati-Harooni, A.: A new model for prediction of binary mixture of ionic liquids + water density using artificial neural network. J. Mol. Liq. 220, 232–237 (2016)

    Article  Google Scholar 

  18. Hemmat Esfe, M., Ahangar, M.R.H., Toghraie, D., Hajmohammad, M.H., Rostamian, H., Tourang, H.: Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J. Therm. Anal. Calorim. 126, 837–843 (2016)

    Article  Google Scholar 

  19. Hemmat Esfe, M., Rostamian, H., Toghraie, D., Yan, W.-M.: Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle: effects of temperature and solid volume fraction. J. Therm. Anal. Calorim. 126, 643–648 (2016)

    Article  Google Scholar 

  20. Fazlali, A., Koranian, P., Beigzadeh, R., Rahimi, M.: Application of artificial neural network for vapor liquid equilibrium calculation of ternary system including ionic liquid: water, ethanol and 1-butyl-3-methylimidazolium acetate. Korean J. Chem. Eng. 30, 1681–1686 (2013)

    Article  Google Scholar 

  21. Lashkarbolooki, M., Hezave, A.Z., Babapoor, A.: Correlation of density for binary mixtures of methanol + ionic liquids using back propagation artificial neural network. Korean J. Chem. Eng. 30, 213–220 (2013)

    Article  Google Scholar 

  22. Haghbakhsh, R., Adib, H., Keshavarz, P., Koolivand, M., Keshtkari, S.: Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions. Thermochim. Acta 551, 124–130 (2013)

    Article  Google Scholar 

  23. Fatehi, M.R., Raeissi, S., Mowla, D.: An artificial neural network to calculate pure ionic liquid densities without the need for any experimental data. J. Supercrit. Fluids 95, 60–67 (2014)

    Article  Google Scholar 

  24. Freire, M.G., Carvalho, P.J., Fernandes, A.M., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. J. Colloid Interface Sci. 314, 621–630 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalaichelvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soman, D.P., Kalaichelvi, P., Radhakrishnan, T.K. (2018). Artificial Neural Network and Response Surface Methodology Modelling of Surface Tension of 1-Butyl-3-methylimidazolium Bromide Solution. In: Bhattacharyya, P., Sastry, H., Marriboyina, V., Sharma, R. (eds) Smart and Innovative Trends in Next Generation Computing Technologies. NGCT 2017. Communications in Computer and Information Science, vol 827. Springer, Singapore. https://doi.org/10.1007/978-981-10-8657-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8657-1_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8656-4

  • Online ISBN: 978-981-10-8657-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation