Log in

Surface tension of pentafluoroethane (HFC-125)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A set of accurate surface-tension data for HFC-125 has been obtained experimentally with both an absolute capillary rise technique and a differential capillary rise technique in the temperature range of 233.15–333.15 K. The purity of the experimental HFC-125 sample is 99.98 wt%. The two sets of experimental results with an absolute capillary rise method agree well with each other and, also, with the experimental results with a differential capillary rise method. The absolute deviations of experimental results with these two methods are within 0.01 mN · m−1. The relative deviation are within 0.2%. A van der Waals surface-tension correlation is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Zhu, Y. D. Fu, and L. Z. Han,Fluid Phase Equil. 80:149 (1992).

    Article  Google Scholar 

  2. M. S. Zhu, J. Wu, and Y. D. Fu,Fluid Phase Equil. 80:99 (1992).

    Google Scholar 

  3. M. S. Zhu, L. Z. Han, K. Z. Zhang, and T. Y. Zhou,Int. J. Thermophys. 14:1039 (1993).

    Google Scholar 

  4. M. S. Zhu. L. Z. Han, and C. X. Lu,Fluid Phase Equil. 86:363 (1993).

    Google Scholar 

  5. M. S. Zhu, J. Li, and B. X. Wang,Int. J. Thermophys. 14:1221 (1993).

    Google Scholar 

  6. M. S. Zhu and C. X. Lu,J. Chem. Eng. Data 39:11 (1994).

    Google Scholar 

  7. J. W. Schmidt and M. R. Moldover,J. Chem. Eng. Data 39:39 (1994).

    Google Scholar 

  8. H. B. Chae, J. W. Schmidt, and M. R. Moldover,J. Chem. Eng. Data 35:6 (1990).

    Google Scholar 

  9. M. Okada, T. Umayahave, M. Hattori, and K. Watanabe,Proc. Tenth Japan. Symp. Thermophys. Prop. (Shizuoka Univ., Johiku Hamamatsu, Japan, 1989), p.60.

    Google Scholar 

  10. O. M. Rayleigh,Proc. R. Soc. London Ser. A 92:184 (1916).

    Google Scholar 

  11. M. Barret and Y. Candau,Proc. 1992 Int. Refrig, Cont.—E Efficiency and New Refrigerants, D. R. Tree and J. E. Braun, eds. (Purdue University, July 14–17, 1992), p. 433.

  12. D. I. Hakim, D. Steinberg, and L. I. Stiel,Ind. Eng. Chem. Fundam. 10:174 (1971).

    Google Scholar 

  13. M. O. McLinden,Int. J. Refrig. 13:149 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M.F., Han, L.Z. & Zhu, M.S. Surface tension of pentafluoroethane (HFC-125). Int J Thermophys 15, 941–948 (1994). https://doi.org/10.1007/BF01447104

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447104

Key words

Navigation