Log in

A density functional theory study on the hydrogen bonding interactions between luteolin and ethanol

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ethanol is one of the most commonly used solvents to extract flavonoids from propolis. Hydrogen bonding interactions play an important role in the properties of liquid system. The main objective of the work is to study the hydrogen bonding interactions between flavonoid and ethanol. Luteolin is a very common flavonoid that has been found in different geographical and botanical propolis. In this work, it was selected as the representative flavonoid to do detailed research. The study was performed from a theoretical perspective using density functional theory (DFT) method. After careful optimization, there exist nine optimized geometries for the luteolin − CH3CH2OH complex. The binding distance of X − H···O, and the bond length, vibrational frequency, and electron density changes of X − H all indicate the formation of the hydrogen bond in the optimized geometries. In the optimized geometries, it is found that: (1) except for the H2’, H5’, and H6’, CH3CH2OH has formed hydrogen bonds with all the hydrogen and oxygen atoms in luteolin. The hydrogen atoms in the hydroxyl groups of luteolin form the strongest hydrogen bonds with CH3CH2OH; (2) all of the hydrogen bonds are closed-shell interactions; (3) the strongest hydrogen bond is the O3’ − H3’···O in structure A, while the weakest one is the C3 − H3···O in structure E; (4) the hydrogen bonds of O3’ − H3’···O, O − H···O4, O − H···O3’ and O − H···O7 are medium strength and covalent dominant in nature. While the other hydrogen bonds are weak strength and possess a dominant character of the electrostatic interactions in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marcucci MC (1995) Apidologie 26:83

    Article  CAS  Google Scholar 

  2. Burdock GA (1998) Food Chem. Toxicol. 36:347

    Article  CAS  Google Scholar 

  3. Merino N, González R, González A, et al. (1996) Arch. Med. Res. 27:285

    CAS  Google Scholar 

  4. Sroka Z, Żbikowska B, Hładyszowski J (2015) J. Mol. Model. 21:1

    Article  CAS  Google Scholar 

  5. Kumazawa S, Hamasak T, Nakayama T (2004) Food Chem. 84:329

    Article  CAS  Google Scholar 

  6. Barbarić M, Mišković K, Bojić M, et al. (2011) J. Ethnopharmacol. 135:772

    Article  Google Scholar 

  7. Scheller S, Wilczok T, Imielski S, et al. (1990) Int. J. Radiat. Biol. 57:461

    Article  CAS  Google Scholar 

  8. Scheiner S (1997) Hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  9. Jeffrey GA, Saenger W (2012) Hydrogen bonding in biological structures. Springer, Berlin

    Google Scholar 

  10. Kataoka K, Harada A, Nagasaki Y (2001) Adv. Drug Deliv. Rev. 47:113

    Article  CAS  Google Scholar 

  11. Moulton B, Zaworotko MJ (2001) Chem. Rev. 101:1629

    Article  CAS  Google Scholar 

  12. Yagai S, Nakajima T, Kishikawa K, et al. (2005) J. Am. Chem. Soc. 127:11134

    Article  CAS  Google Scholar 

  13. Dong K, Zhang SJ, Wang JJ (2016) Chem. Commun. 52:6744

    Article  CAS  Google Scholar 

  14. Lee SH, Doherty TV, Linhardt RJ, et al. (2009) Biotechnol. Bioeng. 102:1368

    Article  CAS  Google Scholar 

  15. Kasiotis KM, Anastasiadou P, Papadopoulos A, et al. (2017) PLoS One 12:0170077

    Article  Google Scholar 

  16. Dimkić I, Ristivojević P, Janakiev T, et al. (2016) Ind. Crop. Prod. 94:856

    Article  Google Scholar 

  17. Cao Y, Wang Y, Yuan Q (2004) Chromatographia 59:135

    CAS  Google Scholar 

  18. Oliveira BG, Lima MCA, Pitta IR, et al. (2010) J. Mol. Model. 16:119

    Article  CAS  Google Scholar 

  19. Clark T, Hennemann M, Murray JS, et al. (2007) J. Mol. Model. 13:291

    Article  CAS  Google Scholar 

  20. Zheng YZ, Zhou Y, Liang Q, et al. (2016) J. Mol. Model. 22:257

    Article  Google Scholar 

  21. Li QZ, Lin QQ, Li WZ, et al. (2008) ChemPhysChem 9:2265

    Article  CAS  Google Scholar 

  22. Li QZ, Wu GS, Yu ZW (2006) J. Am. Chem. Soc. 128:1438

    Article  CAS  Google Scholar 

  23. Dega-Szafran Z, Katrusiak A, Szafran M (2006) J. Mol. Struct. 785:160

    Article  CAS  Google Scholar 

  24. Szafran M, Katrusiak A, Dega-Szafran Z (2007) J. Mol. Struct. 839:99

    Article  CAS  Google Scholar 

  25. Ireta J, Neugebauer J, Scheffler M (2004) J. Phys. Chem. A 108:5692

    Article  CAS  Google Scholar 

  26. Köddermann T, Wertz C, Heintz A, et al. (2006) ChemPhysChem 7:1944

    Article  Google Scholar 

  27. Knorr A, Ludwig R (2015) Sci Rep 5:17505

    Article  Google Scholar 

  28. Zheng YZ, Zhou Y, Liang Q, et al. (2017) Dyes Pigments 141:179

    Article  CAS  Google Scholar 

  29. Zhao Y, Truhlar DG (2008) Theor Chem Account 120:215

    Article  CAS  Google Scholar 

  30. Reed AE, Curtiss LA, Weinhold F (1988) Chem. Rev. 88:899

    Article  CAS  Google Scholar 

  31. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  32. Lu T, Chen F (2012) J. Comput. Chem. 33:580

    Article  Google Scholar 

  33. Boys SF, Bernardi F (1970) Mol. Phys. 19:553

    Article  CAS  Google Scholar 

  34. Espinosa E, Molins E, Lecomte C (1998) Chem. Phys. Lett. 285:170

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, VothGA SP, Dannenberg JJ, Dapprich S, DanielsAD FÖ, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09. Revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  36. Pauling L (1960) The nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  37. Roohi H, Nowroozi AR, Anjomshoa E (2011) Comput. Theor. Chem. 965:211

    Article  CAS  Google Scholar 

  38. Rozas I, Alkorta I, Elguero J (2000) J. Am. Chem. Soc. 122:11154

    Article  CAS  Google Scholar 

  39. Pacios LF (2004) J. Phys. Chem. A 108:1177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of Fujian Educational Committee (JZ160431) and earmarked fund for China Agriculture Research System (CARS-45-KXJ7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Fu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YZ., Xu, J., Liang, Q. et al. A density functional theory study on the hydrogen bonding interactions between luteolin and ethanol. J Mol Model 23, 245 (2017). https://doi.org/10.1007/s00894-017-3409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3409-6

Keywords

Navigation