Log in

Theoretical studies on the hydrogen-bonding interactions between luteolin and water: a DFT approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Flavonoids are among the most important bioactive compounds responsible for the medical properties of honey and propolis. Water is the solvent most commonly used to extract flavonoids from honey and propolis. Hydrogen-bonding interactions are of great importance in the extraction process. In this work, hydrogen-bonding interactions between a representative flavonoid, luteolin, and water were investigated by density functional theory (DFT) from a theoretical viewpoint. The following conclusions were drawn: first, the molecular structure of luteolin is non-planar. Second, nine optimized geometries for the luteolin–H2O complex were obtained. With the exception of the aromatic hydrogen atoms in the phenyl substituent, the other hydrogen and oxygen atoms formed hydrogen-bonds with H2O. Third, luteolin–H2O complexation is accompanied by charge rearrangement. The electron density and the second-order perturbation stabilization energy [E(2)] in the related anti-bonding orbital of the hydrogen-bond donors were increased, causing elongation and a red-shift of the X−H bond in X−H···Y. The stronger interaction makes the electron density and the E(2) increase more in the more stable geometries. The sum of the electron density is transferred from hydrogen-bond acceptors to donors. Fourth, the hydrogen-bonds in the luteolin−H2O complex are weak and basically electrostatic in nature. In addition, O−H···O hydrogen-bonds are stronger than C−H···O hydrogen-bonds in the luteolin–H2O complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  1. Ghisalberti EL (1979) Bee world 60:59

  2. Irish J, Blair S, Carter DA (2011) PLoS One 6:e18229

    Article  CAS  Google Scholar 

  3. Gheldof N, Wang XH, Engeseth NJ (2002) J Agric Food Chem 50:5870

    Article  CAS  Google Scholar 

  4. Kumazawa S, Ueda R, Hamasaka T et al (2007) J Agric Food Chem 55:7722

    Article  CAS  Google Scholar 

  5. Sroka Z, Żbikowska B, Hładyszowski J (2015) J Mol Model 21:307

    Article  Google Scholar 

  6. Islam A, Khalil I, Islam N et al (2012) BMC complementary and alternative medicine 12: 177

  7. Arunan E, Desiraju GR, Klein RA et al (2011) Pure Appl Chem 83:1637

    CAS  Google Scholar 

  8. Scheiner S (1997) Hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  9. Lee SH, Doherty TV, Linhardt RJ et al (2009) Biotechnol Bioeng 102:1368

    Article  CAS  Google Scholar 

  10. Oliveira BG, Araújo RCMU, Carvalho AB et al (2009) J Mol Model 15:123

    Article  CAS  Google Scholar 

  11. Oliveira BG, Lima MCA, Pitta IR et al (2010) J Mol Model 16:119

    Article  CAS  Google Scholar 

  12. Clark T, Hennemann M, Murray JS et al (2007) J Mol Model 13:291

    Article  CAS  Google Scholar 

  13. Li QZ, An XL, Gong BA et al (2007) J Phys Chem A 111:10166

    Article  CAS  Google Scholar 

  14. Li QZ, Lin QQ, Li WZ et al (2008) ChemPhysChem 9:2265

    Article  CAS  Google Scholar 

  15. Li QZ, Wu GS, Yu ZW (2006) J Am Chem Soc 128:1438

    Article  CAS  Google Scholar 

  16. Dega-Szafran Z, Katrusiak A, Szafran M (2006) J Mol Struct 785:160

    Article  CAS  Google Scholar 

  17. Szafran M, Katrusiak A, Dega-Szafran Z (2007) J Mol Struct 839:99

    Article  CAS  Google Scholar 

  18. Ireta J, Neugebauer J, Scheffler M (2004) J Phys Chem A 108:5692

    Article  CAS  Google Scholar 

  19. Köddermann T, Wertz C, Heintz A et al (2006) ChemPhysChem 7:1944

    Article  Google Scholar 

  20. Knorr A, Ludwig R (2015) Sci Rep 5:17505

    Article  Google Scholar 

  21. Zheng YZ, Wang NN, Luo JJ et al (2013) Phys Chem Chem Phys 15:18055

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson, GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09. Revision B.01. Gaussian Inc, Wallingford CT

  23. Zhao Y, Truhlar DG (2008) Theor Chem Account 120:215

    Article  CAS  Google Scholar 

  24. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  25. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  26. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  27. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  Google Scholar 

  28. Li LC, Hu F, Cai WF et al (2009) J Mol Struct THEOCHEM 911:98

    Article  CAS  Google Scholar 

  29. Cox PJ, Kumarasamy Y, Nahar L, Sarker SD, Shoeb M (2003) Acta Cryst E59:0975

    Google Scholar 

  30. Pauling L (1960) The nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  31. Roohi H, Nowroozi AR, Anjomshoa E (2011) Comput Theor Chem 965:211

    Article  CAS  Google Scholar 

  32. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

    Article  CAS  Google Scholar 

  33. Pacios LF (2004) J Phys Chem A 108:1177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hong-Yan He from Bei**g Key Laboratory of Ionic Liquids Clean Process, who gave important advice on data analysis. This work was supported by the earmarked fund for China Agriculture Research System (CARS-45-KXJ7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Zhen Zheng or Da-Fu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YZ., Zhou, Y., Liang, Q. et al. Theoretical studies on the hydrogen-bonding interactions between luteolin and water: a DFT approach. J Mol Model 22, 257 (2016). https://doi.org/10.1007/s00894-016-3128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3128-4

Keywords

Navigation