Log in

A theoretical study of red-shifting and blue-shifting hydrogen bonds occurring between imidazolidine derivatives and PEG/PVP polymers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A theoretical study is presented with the aim to investigate the molecular properties of intermolecular complexes formed by the monomeric units of polyvinylpyrrolidone (PVP) or polyethyleneglycol (PEG) polymers and a set of four imidazolidine (hydantoine) derivatives. The substitution of the carbonyl groups for thiocarbonyl in the hydantoin scaffold was taken into account when analyzing the effect of the hydrogen bonds on imidazolidine derivatives. B3LYP/6-31G(d,p) calculations and topological integrations derived from the quantum theory of atoms in molecules (QTAIM) were applied with the purpose of examining the N–H⋯O hydrogen bond strengths formed between the amide group of the hydantoine ring and the oxygen atoms of PVP and PEG polymers. The effects caused by the N–H⋯O interaction fit the typical evidence for hydrogen bonds, which includes a variation in the stretch frequencies of the N–H bonds. These frequencies were identified as being vibrational red-shifts because their values decreased. Although the values of such calculated interaction energies are between 12 and 33 kJ mol−1, secondary intermolecular interactions were also identified. One of these secondary interactions is formed through the interaction of the benzyl hydrogen atoms with the oxygen atoms of the PVP and PEG structures. As such, we have analyzed the stretch frequencies on the C–H bonds of the benzyl groups, and blue-shifts were identified on these bonds. In this sense, the intermolecular systems formed by hydantoine derivatives and PVP/PEG monomers were characterized as a mix of red-shifting and blue-shifting hydrogen-bonded complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martin TW, Derewenda ZS (1999) Nature Struct Bio 6:403–406

    Article  CAS  Google Scholar 

  2. Gancia E, Montana JG, Manallack DT (2001) J Mol Graph Model 19:349–362

    Article  CAS  Google Scholar 

  3. Hernandes MZ, Leite LFCC, Mourão RHV, Lima MCA, Galdino SL, Neves FAR, Vidal S, Barbe J, Pitta IR (2007) Eur J Med Chem 42:1263–1271

    Article  Google Scholar 

  4. Leite ACL, Moreira DRM, Cardoso MVO, Hernandes MZ, Pereira VRA, Silva RO, Kiperstok AC, Lima RS, Soares MBP (2007) Chem Med Chem 2:1339–1345

    CAS  Google Scholar 

  5. Leite ACL, Lima RS, Moreira DRM, Cardoso MVO, Brito ACG, Santos LMF, Hernandes MZ, Kiperstok AC, Lima RS, Soares MBP (2006) Bioorg Med Chem 14:3749–3757

    Article  CAS  Google Scholar 

  6. Borg J, Jensen MH, Sneppen K, Tiana G (2001) Phys Rev Lett 86:1031–1033

    Article  CAS  Google Scholar 

  7. He Y, Zhu B, Inoue Y (2004) Prog Polym Sci 29:1021–1051

    Article  CAS  Google Scholar 

  8. Wilson AJ (2007) Soft Matter 3:409–425

    Article  CAS  Google Scholar 

  9. Iliopoulos I, Audebert R (2003) J Poly Sci B: Pol Phys 26:2093–2112

    Article  Google Scholar 

  10. Serajuddin ATM (1999) J Pharm Sci 88:1058–1066

    Article  CAS  Google Scholar 

  11. Craig DQM (2002) Int J Pharm 231:131–144

    Article  CAS  Google Scholar 

  12. Karavas E, Georgarakis E, Sigalas MP, Avgoustakis K, Bikiaris D (2007) Eur J Pharm Biopharm 66:334–347

    Article  CAS  Google Scholar 

  13. Teberekidis VI, Sigalas MP (2007) J Mol Struct (THEOCHEM) 803:29-38

    Google Scholar 

  14. Warren KS (1978) Gut 19:572–577

    Article  CAS  Google Scholar 

  15. Albuquerque MCPA, Pitta MGR, Malagueño E, Santana JV, Lima MCA, Pitta IR, Galdino SL (2004) Acta Farm Bon 23:343–348

    Google Scholar 

  16. Scholl S, Koch A, Henning D, Kempter G, Kleinpeter E (1999) Struct Chem 10:355–366

    Article  CAS  Google Scholar 

  17. Baeyer A (1861) Justus Liebigs Ann Chem 119:126–128

    Google Scholar 

  18. Oliveira SM, Silva JBP, Hernandes MZ, Lima MCA, Galdino SL, Pitta IR (2008) Quim Nova 31:614–622

    Google Scholar 

  19. Karavas E, Georgakakis E, Bikiaris B, Thomas T, Katsos V, Xenakis A (2001) Prog Colloid Polym Sci 118:149–152

    Article  CAS  Google Scholar 

  20. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  21. Kohn W, Sham SJ (1965) Phys Rev A 140:1133–1138

    Article  Google Scholar 

  22. Araújo RCMU, da Silva JBP, Ramos MN (1995) Spectrochim Acta A 51:821–830

    Article  Google Scholar 

  23. Araújo RCMU, Ramos MN (1996) J Mol Struct (THEOCHEM) 366:233–240

    Article  Google Scholar 

  24. Araújo RCMU, Ramos MN (1998) J Braz Chem Soc 9:499–505

    Google Scholar 

  25. Nesbitt DJ (1988) Chem Rev 88:843–870

    Article  CAS  Google Scholar 

  26. Bader RFW (1990) Atoms in molecules. A Quantum Theory. Clarendon, Oxford, UK

    Google Scholar 

  27. Oliveira BG, Santos ECS, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2004) Spectrochim Acta A 60:1883–1887

    Article  CAS  Google Scholar 

  28. Oliveira BG, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2005) Spectrochim Acta A 61:491–494

    Article  CAS  Google Scholar 

  29. Oliveira BG, Vasconcellos MLAA (2006) THEOCHEM 774:83–88

    Article  CAS  Google Scholar 

  30. Oliveira BG, Araújo RCMU, Carvalho AB, Lima EF, Silva WLV, Ramos MN, Tavares AM (2006) THEOCHEM 775:39–45

    Article  CAS  Google Scholar 

  31. Oliveira BG, Pereira FS, Araújo RCMU, Ramos MN (2006) Chem Phys Lett 433:390–394

    Article  Google Scholar 

  32. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2007) Spectrochim Acta A 68:626–631

    Article  CAS  Google Scholar 

  33. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2007) J Theor Comp Chem 6:647–660

    Article  Google Scholar 

  34. Oliveira BG, Pereira FS, Araújo RCMU, Ramos MN (2006) Chem Phys Lett 427:181–184

    Article  CAS  Google Scholar 

  35. Oliveira BG, Araújo RCMU, Chagas FF, Carvalho AB, Ramos MN (2008) J Mol Model 14:949–955

    Article  Google Scholar 

  36. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2009) J Mol Model 15:123–131

    Article  CAS  Google Scholar 

  37. Oliveira BG, Vasconcellos MLAA, Olinda RR, Filho EBA (2009) Struct Chem 20:81–90

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN 03, Revision B.04. Gaussian Inc, Wallingford, CT

    Google Scholar 

  39. Ren FD, Cao DL, Wang WL, Ren J, Hou SQ, Chen SS (2009) J Mol Model 15:515–523

    Article  Google Scholar 

  40. Kolboe S, Svelle S (2008) J Phys Chem A 112:6399–6400

    Article  CAS  Google Scholar 

  41. Yılgör E, Yılgör İ, Yurtsever E (2002) Polymer 43:6551-6559

    Google Scholar 

  42. Cioslowski J (1993) Chem Phys Lett 203:137–142

    Article  CAS  Google Scholar 

  43. Cioslowski J (1992) Chem Phys Lett 194:73–78

    Article  CAS  Google Scholar 

  44. Cioslowski J, Surjan PR (1992) THEOCHEM 255:9–33

    Article  Google Scholar 

  45. AIM 2000 1.0 program designed by Biegler-König F, University of Applied Sciences, Bielefeld, Germany

  46. van Duijneveldt FB, Murrell JN (1967) J Chem Phys 46:1759–1767

    Article  Google Scholar 

  47. McQuarrie DA (1973) Statistical thermodynamics. Harper and Row, New York

    Google Scholar 

  48. Boys SB, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  49. Pauling L (1945) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  50. Kovács A, Varga Z (2006) Coord Chem Rev 250:710–727

    Article  Google Scholar 

  51. Herrebout WA, Delanoye SN, van der Veken BJ (2004) J Phys Chem A 108:6059–6064

    Article  CAS  Google Scholar 

  52. Marques MPM, da Costa AM Amorim, Ribeiro-Claro PJA (2001) J Phys Chem A 105:5292–5297

    Article  CAS  Google Scholar 

  53. Barnes AJ (2004) J Mol Struct 704:3–9

    Article  CAS  Google Scholar 

  54. Cubero E, Orozco M, Hobza P, Luque FJ (1999) J Phys Chem A 103:6394–6401

    Article  CAS  Google Scholar 

  55. Špirko V, Hobza P (2006) Chem Phys Chem 7:640–643

    Google Scholar 

  56. Grabowski SJ (2005) Hydrogen bonds–new insights. Springer, Berlin

    Google Scholar 

  57. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley, Weinheim

    Book  Google Scholar 

  58. Wu DL, Liu L, Liu GF, Jia DZ (2007) J Phys Chem A 111:5244–5252

    Article  CAS  Google Scholar 

  59. Filho EBA, Ventura E, do Monte SA, Oliveira BG, Junior CGL, Rocha GB, Vasconcellos MLAA (2007) Chem Phys Lett 449:336–340

    Article  CAS  Google Scholar 

  60. Bader RFW (2005) Monatshefte für Chemie 136:819–854

    Article  CAS  Google Scholar 

  61. Bader RFW (1985) Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  62. Bader RFW (1998) J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge partial financial support from the Brazilian Funding agencies CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz G. Oliveira.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

894_2009_525_MOESM1_ESM.doc

Geometries of the PVP⋯1a (I), PVP⋯2a (II), PVP⋯3a (III), PVP⋯4a (IV), PEG⋯1a (V), PEG⋯2a (VI), PEG⋯3a (VII) and PEG⋯4a (VIII) complexes using B3LYP/6–31G(d,p) calculations (DOC 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, B.G., Lima, M.C.A., Pitta, I.R. et al. A theoretical study of red-shifting and blue-shifting hydrogen bonds occurring between imidazolidine derivatives and PEG/PVP polymers. J Mol Model 16, 119–127 (2010). https://doi.org/10.1007/s00894-009-0525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0525-y

Keywords

Navigation