Log in

A DFT-based study of the hydrogen-bonding interactions between myricetin and ethanol/water

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Flavonoids are vital constituents of propolis that are responsible for its medicinal activity. Flavonoid extraction commonly employs ethanol and water as solvents. In the extraction reaction, hydrogen-bonding interactions play a crucial role. In this study, hydrogen-bonding interactions between myricetin—an abundant flavonoid in propolis—and ethanol or water were studied theoretically using density functional theory (DFT) methods. The molecular geometry and charge properties of the myricetin monomer were analyzed first. After careful optimization, nine stable myricetin−CH3CH2OH/H2O complex geometries were obtained. Hydrogen bonds were confirmed to exist in these optimized structures. The most stable structures were found to be those with hydrogen bonds involving the hydrogen atoms of hydroxyl groups and the oxygen atom of the keto group of myricetin. The characteristics of the hydrogen-bonding interactions in the optimized structures were carefully analyzed. The hydrogen bonds in the optimized geometries were shown to be closed-shell-type interactions. H5′ in ring B of myricetin presented the strongest interaction. The hydrogen bonds were found to be Coulombic interactions. Those between the hydrogen atoms of the hydroxyl groups in myricetin and the oxygen atoms in CH3CH2OH and H2O were of moderate strength and had some covalent character, while the others were weak and were dominantly electrostatic in character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–b

Similar content being viewed by others

References

  1. Banskota AH, Tezuka Y, Prasain JK, Saiki I, Kadota S (1998) J Nat Prod 61:896

  2. Marcucci MC (1995) Apidologie 26:83

  3. Burdock GA (1998) Food Chem Toxicol 36:347

  4. Daugsch A, Moraes CS, Fort P et al (2008) Evid Based Complement Alternat Med 5:435

  5. Merino N, González R, González A et al (1996) Arch Med Res 27:285

  6. Sroka Z, Żbikowska B, Hładyszowski J (2015) J Mol Model 21:1

  7. Scheiner S (1997) Hydrogen bonding. Oxford University Press, New York

  8. Arunan E, Desiraju GR, Klein RA et al (2011) Pure Appl Chem 83:1637

  9. Jeffrey GA, Saenger W (2012) Hydrogen bonding in biological structures. Springer, Berlin

  10. Deechongkit S, Dawson PE, Kelly JW (2004) J Am Chem Soc 126:16762

  11. Zhao GJ, Han KL (2008) ChemPhysChem 9:1842

  12. Henry M (2002) ChemPhysChem 3:607

  13. Stockton WB, Rubner MF (1997) Macromolecules 30:2717

  14. Dore JC, Teixeira J (1991) Hydrogen-bonded liquids. Kluwer, Boston

  15. Dong K, Zhang SJ, Wang JJ (2016) Chem Commun 52:6744

  16. Lee SH, Doherty TV, Linhardt RJ et al (2009) Biotechnol Bioeng 102:1368

  17. Scheller S, Gazda G, Pietsz G et al (1998) Pharmacol Res Commun 20:323

  18. Scheller S, Wilczok T, Imielski S et al (1990) Int J Radiat Biol 57:461

  19. Barbarić M, Mišković K, Bojić M et al (2011) J Ethnopharmacol 135:772

  20. Basnet P, Matsushige K, Hase K et al (1996) Biol Pharm Bull 19:1479

  21. Nagai T, Inoue R, Inoue H et al (2003) Food Chem 80:29

  22. Huang S, Zhang CP, Wang K (2014) Molecules 19:19610

  23. DeToma AS, Choi JS, Braymer JJ et al (2011) ChemBioChem 12:1198

  24. Chobot V, Hadacek F (2011) Redox Rep 16:242

  25. Oliveira BG, Lima MCA, Pitta IR et al (2010) J Mol Model 16:119

  26. Oliveira BG, Araújo RCMU, Carvalho AB et al (2009) J Mol Model 15:123

  27. Clark T, Hennemann M, Murray JS et al (2007) J Mol Model 13:291

  28. Li QZ, Lin QQ, Li WZ et al (2008) ChemPhysChem 9:2265

  29. Zheng YZ, Zhou Y, Liang Q, Chen DF, Guo R (2016) J Mol Model 22:257

  30. Li QZ, Wu GS, Yu ZW (2006) J Am Chem Soc 128:1438

  31. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215

  32. Dega-Szafran Z, Katrusiak A, Szafran M (2006) J Mol Struct 785:160

  33. Ireta J, Neugebauer J, Scheffler M (2004) J Phys Chem A 108:5692

  34. Köddermann T, Wertz C, Heintz A et al (2006) ChemPhysChem 7:1944

  35. Knorr A, Ludwig R (2015) Sci Rep 5:17505

  36. Zheng YZ, Zhou Y, Liang Q, Chen DF, Guo R (2016) J Mol Model 22:95

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision B.01. Gaussian Inc., Wallingford

  38. Boys SF, Bernardi F (1970) Mol Phys 19:553

  39. Politzer P, Murray JS (2013) ChemPhysChem 14:278

  40. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

  41. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon, Oxford

  42. Lu T, Chen F (2012) J Comput Chem 33:580

  43. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

  44. Murray JS, Politzer P (2017) WIREs Comput Mol Sci 7:e1326

  45. Politzer P, Murray JS (2002) Theor Chem Accounts 108:134

  46. Pauling L (1960) The nature of the chemical bond. Cornell University Press, New York

  47. Roohi H, Nowroozi AR, Anjomshoa E (2011) Comput Theor Chem 965:211

  48. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

  49. Pacios LF (2004) J Phys Chem A 108:1177

  50. Politzer PJ, Murray S, Clark T (2015) J Mol Model 21:52

  51. Clark T, Murray JS, Politzer P (2018) Phys Chem Chem Phys 20:30076. https://doi.org/10.1039/c8cp06786d

Download references

Acknowledgments

This work was supported by the Earmarked Fund for China Agriculture Research System (CARS-44-KXJ7), the Open Foundation of Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, China (2017MFNZS05), and the Fujian Agriculture and Forestry University Foundation for Excellent Youth Teachers (xjq201715).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Fu Chen or Li-Ming Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YZ., Deng, G., Guo, R. et al. A DFT-based study of the hydrogen-bonding interactions between myricetin and ethanol/water. J Mol Model 25, 67 (2019). https://doi.org/10.1007/s00894-019-3940-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3940-8

Keywords

Navigation