Log in

Isolation and Enzymatic Characterization of Fungal Strains from Grapevines with Grapevine Trunk Diseases Symptoms in Central Mexico

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Grapevine production is economically indispensable for the global wine industry. Currently, Mexico cultivates grapevines across approximately 28 500 hectares, ranking as the 26th largest producer worldwide. Given its significance, early detection of plant diseases’ causal agents is crucial for preventing outbreaks. Consequently, our study aimed to identify fungal strains in grapevines exhibiting trunk disease symptoms and assess their enzymatic capabilities as indicators of their phytopathogenic potential. We collected plant cultivars, including Malbec, Shiraz, and Tempranillo, from Querétaro, Mexico. In the laboratory, we superficially removed the plant bark to prevent external contamination. Subsequently, the sample was superficially disinfected, and sawdust was generated from the symptomatic tissue. Cultivable fungal strains were isolated using aseptic techniques from the recovered sawdust. Colonies were grown on PDA and identified through a combination of microscopy and DNA-sequencing of the ITS and LSU nrDNA regions, coupled with a BLASTn search in the GenBank database. We evaluated the strains’ qualitative ability to degrade cellulose, starch, and lignin using specific media and stains. Using culture morphology and DNA-sequencing, 13 species in seven genera were determined: Acremonium, Aspergillus, Cladosporium, Dydimella, Fusarium, Sarocladium, and Quambalaria. Some isolated strains were able to degrade cellulose or lignin, or starch. These results constitute the first report of these species community in the Americas. Using culture-dependent and DNA-sequencing tools allows the detection of fungal strains to continue monitoring for early prevention of the GTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. INEGI (2019) Encuesta Nacional Agropecuaria 2019. https://www.inegi.org.mx/contenidos/programas/ena/2019/tabulados/ena19_nac_agri01.xlsx. Accessed 5 Mar 2023

  2. FAO (2020) Crops and livestock products. In: FAOSTAT. https://www.fao.org/faostat/en/#data/QCL Accessed 5 Mar 2023

  3. de Almeida AB, Concas J, Campos MD et al (2020) Endophytic fungi as potential biological control agents against grapevine trunk diseases in alentejo region. Biology (Basel) 9:1–23. https://doi.org/10.3390/biology9120420

    Article  CAS  Google Scholar 

  4. Hrycan J, Hart M, Bowen P et al (2020) Grapevine trunk disease fungi: their roles as latent pathogens and stress factors that favour disease development and symptom expression. Phytopathol Mediterr 59:395–424. https://doi.org/10.14601/Phyto-11275

    Article  CAS  Google Scholar 

  5. Niem JM, Billones-Baaijens R, Stodart B, Savocchia S (2020) Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic pseudomonas against grapevine trunk diseases. Front Microbiol 11:477. https://doi.org/10.3389/fmicb.2020.00477

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maldonado-González MM, Sodupe MA, Vicente CB, Muñoz RB et al (2018) Enfermedades fúngicas de la madera de la vid: líneas de investigación actuales y últimos avances para su control. Cuad campo 61:28–35

    Google Scholar 

  7. Rangel-Montoya EA, Rolshausen PE, Hernandez-Martinez R (2023) Unravelling the colonization mechanism of Lasiodiplodia brasiliensis in grapevine plants. Phytopathol Mediterr 62:135–149. https://doi.org/10.36253/phyto-14198

    Article  CAS  Google Scholar 

  8. Claverie M, Notaro M, Fontaine F, Wery J (2020) Current knowledge on Grapevine Trunk Diseases with complex etiology: a systemic approach. Phytopathol Mediterr 59:29–53

    Article  CAS  Google Scholar 

  9. Fischer M (2019) Grapevine trunk diseases in German viticulture. III. Biodiversity and spatial distribution of fungal pathogens in rootstock mother plants and possible relation to leaf symptoms. Vitis 58:141–149. https://doi.org/10.5073/vitis.2019.58.141-149

    Article  Google Scholar 

  10. Narmani A, Arzanlou M (2019) Quambalaria cyanescens, a new fungal trunk pathogen associated with grapevine decline in Iran. Crop Prot 124:104875. https://doi.org/10.1016/j.cropro.2019.104875

    Article  Google Scholar 

  11. Bustamante MI, Elfar K, Smith RJ et al (2022) First Report of Fusarium annulatum associated with young vine decline in California. Plant Dis 106:2752

    Article  Google Scholar 

  12. Winkler AJ (1974) General viticulture. Univ of California Press, Oakland

    Book  Google Scholar 

  13. Aguilar-Sánchez G (2020) Diferenciación de tierras agrícolas en el municipio de Tequisquiapan, Querétaro. Revista Geográfica de América Central 2:121–143. https://doi.org/10.15359/rgac.65-2.5

    Article  Google Scholar 

  14. Barnett HL, Hunter BB (1998) Illustrated genera of imperfect fungi. The American phytopathological society. US Dep Agric Agric Res Serv Washingt State Univ Pullman APS Press USA St Paul, Minnesota USA

  15. Vogel HJ (1956) A convenient growth medium for neurospora crassa. Microb Genet Bull 13:42–47

    Google Scholar 

  16. Riddell RW (1950) Permanent stained mycological preparations obtained by slide culture. Mycologia 42:265–270

    Article  Google Scholar 

  17. Kiffer E, Michel M (2000) The Deuteromycetes, mitosporic fungi: classification and generic keys. CRC Press, Boca Raton

    Google Scholar 

  18. Ángeles-Argáiz RE, Flores-García A, Ulloa M et al (2016) Commercial Sphagnum peat moss is a vector for exotic ectomycorrhizal mushrooms. Biol Invasions 18:89–101. https://doi.org/10.1007/s10530-015-0992-2

    Article  Google Scholar 

  19. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  20. Hopple JS, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Mol Phylogenet Evol 13(1):1–19. https://doi.org/10.1006/mpev.1999.0634

    Article  CAS  PubMed  Google Scholar 

  21. Shahriarinour M, Wahab MNA, Ariff A, Mohamad R (2011) Screening, isolation and selection of cellulolytic fungi from oil palm empty fruit bunch fibre. Biotechnology 10:108–113. https://doi.org/10.3923/biotech.2011.108.113

  22. Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33

  23. Sujeeta KM, Shikha M, Khushboo S (2017) Isolation and screening of amylase producing fungi. Int J Curr Microbiol Appl Sci 6:783–788. https://doi.org/10.20546/ijcmas.2017.604.098

    Article  CAS  Google Scholar 

  24. Batista-García RA, Balcázar-López E, Miranda-Miranda E et al (2014) Characterization of lignocellulolytic activities from a moderate halophile strain of Aspergillus caesiellus isolated from a sugarcane bagasse fermentation. PLoS ONE 9:e105893. https://doi.org/10.1371/journal.pone.0105893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  26. Arzanlou M, Moshari S, Salari M, Badali H (2013) Molecular characterization and pathogenicity of Phaeoacremonium spp. associated with esca disease of grapevine in Northern Iran. Arch Phytopathol Plant Prot 46:375–388. https://doi.org/10.1080/03235408.2012.741443

    Article  CAS  Google Scholar 

  27. De Beer ZW, Begerow D, Bauer R et al (2006) Phytogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia. Stud Mycol 55:289–298. https://doi.org/10.3114/sim.55.1.289

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen AJ, Frisvad JC, Sun BD et al (2016) Aspergillus section Nidulantes (formerly Emericella): polyphasic taxonomy, chemistry and biology. Stud Mycol 84:1–118. https://doi.org/10.1016/j.simyco.2016.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bruez E, Vallance J, Gerbore J et al (2014) Analyses of the temporal dynamics of fungal communities colonizing the healthy wood tissues of esca leaf-symptomatic and asymptomatic vines. PLoS ONE 9:e95928. https://doi.org/10.1371/journal.pone.0095928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silva-Valderrama I, Toapanta D, de los MMA et al (2021) Biocontrol potential of grapevine endophytic and rhizospheric fungi against trunk pathogens. Front Microbiol 11:1–13. https://doi.org/10.3389/fmicb.2020.614620

    Article  Google Scholar 

  31. Ferrigo D, Causin R, Raiola A (2017) Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease. Biocontrol 62:821–833. https://doi.org/10.1007/s10526-017-9847-3

    Article  Google Scholar 

  32. Park SW, Nguyen TTT, Lee HB (2017) Characterization of two species of Acremonium (unrecorded in Korea) from soil samples: Acremonium variecolor and Acremonium persicinumw. Mycobiology 45:353–361. https://doi.org/10.5941/MYCO.2017.45.4.353

    Article  PubMed  PubMed Central  Google Scholar 

  33. Deb D, Khan A, Dey N (2020) Phoma diseases: epidemiology and control. Plant Pathol 69:1203–1217. https://doi.org/10.1111/ppa.13221

    Article  CAS  Google Scholar 

  34. Cimmino A, Bahmani Z, Masi M et al (2022) Phytotoxins produced by Didymella glomerata and Truncatella angustata, associated with grapevine trunk diseases (GTDs) in Iran. Nat Prod Res 36:4322–4329. https://doi.org/10.1080/14786419.2021.1979544

    Article  CAS  PubMed  Google Scholar 

  35. González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42. https://doi.org/10.1007/s13225-010-0073-x

    Article  Google Scholar 

  36. Dissanayake AJ, Purahong W, Wubet T et al (2018) Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Divers 90:85–107. https://doi.org/10.1007/s13225-018-0399-3

    Article  Google Scholar 

  37. Machowicz-Stefanik Z, Król E (2013) Characterization of Phoma negriana, a new species from grapevine canes in Poland. Acta Mycol 42:113–117. https://doi.org/10.5586/am.2007.011

    Article  Google Scholar 

  38. Gonzalez-Perez E, Yanez-Morales MJ, Ortega-Escobar HM, Velazquez-Mendoza J (2008) First report of Acremonium strictum and Gliocladium roseum causing basal stem and corm rot of Gladiolus grandiflorus in Mexico. J Plant Pathol 90:586

    Google Scholar 

  39. González-Pérez E, de Jesús YMM, Manuel Ortega-Escobar H et al (2009) Comparative analysis among pathogenic fungal species that cause Gladiolus (Gladiolus grandiflorus Hort) Corm Rot in Mexico. Rev Mex Fitopatol 27:45–52

    Google Scholar 

  40. Fan X, **ao M, Kong F et al (2014) A rare fungal species, Quambalaria cyanescens, isolated from a patient after augmentation mammoplasty—Environmental contaminant or pathogen? PLoS ONE 9:e106949. https://doi.org/10.1371/journal.pone.0106949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuan CS, Yew SM, Toh YF et al (2015) Identification and characterization of a rare fungus, Quambalaria cyanescens, isolated from the peritoneal fluid of a patient after nocturnal intermittent peritoneal dialysis. PLoS ONE 10:e0145932. https://doi.org/10.1371/journal.pone.0145932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Delgado-Ramírez CS, Sepúlveda E, Rangel-Montoya EA et al (2023) Heritage grapevines as sources of biological control agents for Botryosphaeria dieback pathogens. Phytopathol Mediterr 62:115–134. https://doi.org/10.36253/phyto-14154

    Article  CAS  Google Scholar 

  43. Garcia JF, Lawrence DP, Morales-Cruz A et al (2021) Phylogenomics of plant-associated Botryosphaeriaceae species. Front Microbiol 12:1–18. https://doi.org/10.3389/fmicb.2021.652802

    Article  Google Scholar 

  44. Rangel-Montoya EA, Paolinelli M, Rolshausen PE et al (2021) Characterization of Lasiodiplodia species associated with grapevines in Mexico. Phytopathol Mediterr 60:237–251. https://doi.org/10.36253/phyto-12576

    Article  CAS  Google Scholar 

  45. Mateo JJ, Andreu L (2020) Characterization of an exocellular ethanol-tolerant β-glucosidase from Quambalaria cyanescens isolates from unripened grapes. Eur Food Res Technol 246:2349–2357. https://doi.org/10.1007/s00217-020-03578-w

    Article  CAS  Google Scholar 

  46. Choi JY, Park AR, Kim YJ et al (2011) Purification and characterization of an extracellular β-glucosidase produced by Phoma sp. KCTC11825BP isolated from rotten mandarin peel. J Microbiol Biotechnol 21:503–508. https://doi.org/10.4014/jmb.1102.02014

    Article  CAS  PubMed  Google Scholar 

  47. Vijaykumar MH, Veeranagouda Y, Neelakanteshwar K, Karegoudar TB (2006) Decolorization of 1:2 metal complex dye Acid blue 193 by a newly isolated fungus, Cladosporium cladosporioides. World J Microbiol Biotechnol 22:157–162. https://doi.org/10.1007/s11274-005-9013-4

    Article  CAS  Google Scholar 

  48. Bi R, Lawoko M, Henriksson G (2016) Phoma herbarum, a soil fungus able to grow on natural lignin and synthetic lignin (DHP) as sole carbon source and cause lignin degradation. J Ind Microbiol Biotechnol 43:1175–1182. https://doi.org/10.1007/s10295-016-1783-1

    Article  CAS  PubMed  Google Scholar 

  49. Krishnamoorthy R, Jose PA, Ranjith M et al (2018) Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1–2 and Phoma tropica MRCH 1–3. J Environ Chem Eng 6:588–595. https://doi.org/10.1016/j.jece.2017.12.035

    Article  CAS  Google Scholar 

  50. Montenecourt BS, Eveleigh DE (1977) Semiquantitative plate assay for determination of cellulase production by Trichoderma viride. Appl Environ Microbiol 33:178–183. https://doi.org/10.1128/aem.33.1.178-183.1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AAM thanks CONACYT for the postdoctoral scholarship funding through “ESTANCIAS POSDOCTORALES POR MÉXICO MODALIDADES 1 Y 2 en la Modalidad: Modalidad 1: Estancia Posdoctoral Académica”, CVU number 385015. Also, AAM thanks to C. Cajica, A. Jiménez-Mu and J. Arriaga-Espinosa for their technical help during the field and laboratory procedures. REAA and RGO thank the company LABCITEC for providing us with their facilities to carry out part of the molecular protocols.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AAM and JRPA designed and conducted the study and wrote the first draft. REAA and RGO performed the molecular approaches. All authors contributed to the manuscript’s final discussion, writing, and revision.

Corresponding authors

Correspondence to Andrés Argüelles-Moyao or Juan-Ramiro Pacheco-Aguilar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argüelles-Moyao, A., Ángeles-Argáiz, R., Garibay-Orijel, R. et al. Isolation and Enzymatic Characterization of Fungal Strains from Grapevines with Grapevine Trunk Diseases Symptoms in Central Mexico. Curr Microbiol 81, 200 (2024). https://doi.org/10.1007/s00284-024-03709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03709-6

Navigation