Log in

The endophytic mycota associated with Vitis vinifera in central Spain

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

This study investigates the diversity of fungal endophytes associated with several varieties of grapevines with differing modes of cultivation in the Madrid region (central Spain). Our goal is to screen for and identify new fungal biocontrol agents against vine diseases, especially those associated with young plants produced in nurseries. A total of 500 fungal strains representing 68 taxa from six locations were isolated and characterised. Differences regarding cultivar and plant part processed were analysed in terms of composition and relative abundance of species. Some of the more frequently isolated strains represented were Acremonium, Alternaria, Aureobasidium, Botryotinia, Cladosporium, Epicoccum, Fusarium, Gibberella, Nectria, Penicillium, Phoma and Trichoderma species. Botryosphaeria species and Phomopsis viticola were also frequently isolated and may be vine pathogens. Several species of Acremonium, Phoma (P. glomerata) and Chaetomium showed promising antagonistic activity at the laboratory scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alva P, McKenzie EHC, Pointing SB, Pena-Muralla R, Hyde KD (2002) Do sea grasses harbour endophytes? Fungal Divers Res Ser 7:167–178

    Google Scholar 

  • Aly A, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phtytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Google Scholar 

  • Arenal F, Platas G, Monte E, Peláez F (2000) ITS sequencing support for Epicoccum nigrum and Phoma epicoccina being the same biological species. Mycol Res 104:301–303

    CAS  Google Scholar 

  • Armengol J, Vicent A, Torné L, García-Figueres F, García-Jiménez J (2001a) Hongos asociados a decaimientos y afecciones de madera de vid en diversas zonas españolas. Bol Sanid Veg Plagas 27:137–153

    Google Scholar 

  • Armengol J, Vicent A, Torné L, García-Figueres F, García-Jiménez J (2001b) Fungi associated with esca and grapevine declines in Spain: a three-year survey. Phytopathol Mediterr 40(suppl):S325–S329

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    PubMed  CAS  Google Scholar 

  • Aroca A, García-Figueres F, Bracamonte L, Luque J, Raposo R (2006) A survey of trunk disease pathogens within rootstocks of grapevines in Spain. Eur J Plant Pathol 115:195–202

    Google Scholar 

  • Bakshi S, Sztejnberg A, Yarden O (2001) Isolation and characterization of a cold-tolerant strain of Fusarium proliferatum, a biocontrol agent of grape downy mildew. Phytopathology 91:1062–1068

    PubMed  CAS  Google Scholar 

  • Banerjee D, Manna S, Mahapatra S, Pati BR (2009) Fungal endophytes in three medicinal plants of Lamiaceae. Acta Microbiol Immunol Hung 56:243–250

    PubMed  CAS  Google Scholar 

  • Bettucci L, Saravay M (1993) Endophytic fungi of Eucalyptus globulus: a preliminary study. Mycol Res 97:679–682

    Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Erdlin SC, Harris LM (eds) Endophytic fungi in grasses and woody plants. APS, USA, pp 31–65

    Google Scholar 

  • Bills GF, Polishook JD (1992) Recovery of endophytic fungi from Chamaecyparis thyoides. Sydowia 44:1–12

    Google Scholar 

  • Bisseger M, Sieber TN (1994) Assemblages of endophytic fungi in coppice shoots of Castanea sativa. Mycologia 86:648–655

    Google Scholar 

  • Brunner F, Petrini O (1992) Taxonomy of some Xylaria species and xylariaceous endophytes by isozyme electrophoresis. Mycol Res 96:723–733

    Google Scholar 

  • Cardinali S, Gobbo F, Locci R (1994) Endofiti fungini in tessuti fogliari della vite. Micol Ital 1:81–84

    Google Scholar 

  • Casieri L, Hofstetter V, Viret O, Gindro K (2009) Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathol Mediterr 48:73–83

    Google Scholar 

  • Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3034–3043

    Google Scholar 

  • Chapela IH, Boddy L (1988) Fungal colonization of attached beech branches. I. Early stages of development of fungal communities. New Phytol 110:39–45

    Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297

    Google Scholar 

  • Collado J, Platas G, González I, Peláez F (1999) Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol 144:525–532

    Google Scholar 

  • Collado J, Platas G, Peláez F (2000) Host specificity in fungal endophytic populations of Quercus ilex and Quercus faginea from Central Spain. Nova Hedwig 71:421–430

    Google Scholar 

  • Colwell RK (2005) EstimateS: Statistical estimation of species richness and shared species from samples. Version 7.5. Persistent URL < purl. oclc.org/estimates>

  • Colwell RK, Coddington JA (1994) Estimating trerrestrial biodiversity through extrapolation. Philos Trans R Soc Engl B 345:101–118

    CAS  Google Scholar 

  • Crozier J, Thomas SE, Aime MC, Evans HC, Holmes KA (2006) Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathol 55:783–791

    CAS  Google Scholar 

  • De Errasti A, Carmarán CC, Novas MV (2010) Diversity and significance of fungal endophytes from living stems of naturalized trees from Argentina. Fungal Divers 41:29–40

    Google Scholar 

  • Di Marco S, Osti F (2007) Applications of Trichoderma to prevent Phaeomoniella chlamydospora infections in organic nurseries. Phytopathol Mediterr 46:73–83

    Google Scholar 

  • Di Marco S, Osti F, Cesari A (2004) Experiments on the control of esca by Trichoderma. Phytopathol Mediterr 43:108–115

    Google Scholar 

  • Dreyfuss MM (1986) Neue erkenntnisse aus einem pharmakologischen pilz-screening. Sydowia 39:22–36

    Google Scholar 

  • Dugan FM, Lupien SL, Grove GG (2002) Incidente, aggressiveness and in planta interactions of Botrytis cinerea and other filamentous fungi quiescent in grape berries and dormant buds in Central Washington State. J Phytopathol 150:375–381

    Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA genes phylogenies reveal uncharacterized fungal endophytes. Fungal Divers 23:121–138

    Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Potencial of yeast as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience 47:25–35

    Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    PubMed  Google Scholar 

  • Falk SP, Pearson RC, Gadoury DM, Seem RC, Sztejnberg A (1996) Fusarium proliferatum as a biocontrol agents against grape downy mildew. Phytopathology 86:1010–1017

    Google Scholar 

  • Fisher PJ, Petrini O (1990) A comparative study of fungal endophytes in xylem and bark of Alnus species in England and Switzerland. Mycol Res 94:313–319

    Google Scholar 

  • Fisher PJ, Anson AE, Petrini O (1986) Fungal endophytes in Ulex europaeus and Ulex gallii. Trans Br Mycol Soc 86:153–193

    Google Scholar 

  • Fowler SR, Jaspers MV, Walter M, Steward A (1999) Suppression of overwintering Botrytis cinerea inoculum on grape rachii using antagonistic fungi. Proceedings of the 52nd New Zealand Plant Protection Conference 141–147

  • Franz F, Grotjahn R, Acker G (1993) Identification of Naemacyclus minor hyphae within needle tissues of Pinus sylvestris by immunoelectron microscopy. Arch Microbiol 160:265–272

    Google Scholar 

  • Fröhlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Google Scholar 

  • Gamboa MA, Bayman P (2001) Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae). Biotropica 33:352–360

    Google Scholar 

  • Giménez-Jaime A, Aroca A, Raposo R, García-Jiménez J, Armengol J (2006) Occurrence of fungal pathogens associated with grapevine nurseries and the decline of young vines in Spain. J Phytopathol 154:598–602

    Google Scholar 

  • Gramaje D, Armengol J, Salazar D, López-Cortés I, García-Jiménez J (2009a) Effect of hot-water treatments above 50°C on grapevine viability and survival of Petri disease pathogens. Crop Prot 28:280–285

    Google Scholar 

  • Gramaje D, Aroca A, Raposo R, García-Jiménez J, Armengol J (2009b) Evaluation of fungicides to control Petri disease pathogens in the grapevine propagation process. Crop Prot 28:1091–1097

    CAS  Google Scholar 

  • Gwinn KD, Gavin AM (1992) Relationship between endophytic infection level of tall fescue seed lots and Rhizoctonia zeae seedling disease. Plant Dis 76:911–914

    Google Scholar 

  • Halleen F, Mostert L, Crous PW (2007) Pathogenicity testing of lesser-known vascular fungi of grapevines. Australas Plant Pathol 36:277–285

    Google Scholar 

  • Harvey IC, Hunt JS (2006) Penetration of Trichoderma harzianum into grapevine wood from treated pruning wounds. NZ Plant Prot 59:343–347

    Google Scholar 

  • Hensens OD, Ondeyka JG, Dombrowski AW, Ostlind DA, Zink DL (1999) Isolation and structure of nodulisporic acid A1 and A2, novel insecticides from a Nodulisporium sp. Tetrahedron Lett 40:5455–5458

    CAS  Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Host affinity and geographic structure among boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    PubMed  CAS  Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Johnson JA, Whitney NJ (1989) An investigation on needle endophyte colonization patterns with respect to the height and compass direction in a single crown of balsam fir (Abies balsamea). Can J Bot 67:723–725

    Google Scholar 

  • Karamchand KS, Sridhan KR, Bhat R (2009) Diversity of fungi associated with estuarine sedge Cyperus malacensis Lam. J Agric Technol 5:111–127

    Google Scholar 

  • Kauhanen M, Vainio EJ, Hantula J, Eyjolfsdottir GG, Niemelä P (2006) Endophytic fungi in Siberian larch (Larix sibirica) needles. For Pathol 36:434–446

    Google Scholar 

  • Knoch TR, Faeth SH, Arnott DL (1993) Endophytic fungi alter foraging and dispersal by desert seed-harvesting ants. Oecologia 95:470–475

    Google Scholar 

  • Kortekamp A (1997) Epicoccum nigrum link: a biological control, agent of Plasmopara viticola (Berk. et Curt.) Berl. et De Toni? Vitis 36:215–216

    Google Scholar 

  • Kowalski T, Kehr RD (1992) Endophytic fungal colonization of branch bases in several forest tree species. Sydowia 44:137–168

    Google Scholar 

  • Larena I, Torres R, De Cal A, Liñán M, Melgarejo P, Domenichini P, Bellini A, Mandrin JF, Lichou J, Ochoa de Eribe X, Usall J (2005) Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol Control 32:305–310

    Google Scholar 

  • Leuchtmann A, Schmidt D, Bush LP (2000) Different levels of protective alkaloids in grasses with stroma-forming and seed transmitted Epichloë/Neotyphodium endophytes. J Chem Ecol 26:1025–1036

    CAS  Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD (2007) Endophytic fungi associated with lichens in Baihua mountain of Bei**g, China. Fungal Divers 25:69–80

    Google Scholar 

  • Lin X, Huang Y, Zheng Z, Su W, Quiang X, Shen Y (2010) Endophytes from the pharmaceutical plant, Annona squamosa: isolation, bioactivity, identification and diversity of its polyketide synthase gene. Fungal Divers 43:41–51

    Google Scholar 

  • Marrugan AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Martini M, Musetti R, Grisan S, Polizzotto R, Borselli S, Pavan F, Osler R (2009) DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis 93:993–998

    CAS  Google Scholar 

  • Mateo-Argomániz J (1995) Incidencia de la eutipiosis en el viñedo de la Rioja Alavesa. Phytoma Esp 66:15–18

    Google Scholar 

  • Monte E (2001) Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4:1–4

    PubMed  CAS  Google Scholar 

  • Mostert L, Crous PW, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the “Phomopsis viticola” complex. Sydowia 52:46–58

    Google Scholar 

  • Muruamendiaraz A, Lecomte P, Legorburu FJ (2009) Occurrence of the Eutypa lata sexual stage on grapevine in Rioja Alavesa. Phytopathol Mediterr 48:140–144

    Google Scholar 

  • Musetti R, Vecchione A, Stringher L, Borselli S, Zulini L, Marzani C, D’Ambrosio M, Sanità di Toppi L, Pertot I (2006) Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology 96:689–698

    PubMed  CAS  Google Scholar 

  • Neubert K, Mendgen K, Brinkmann H, Wirsel SGR (2006) Only a few fungal species dominate highly diverse mycofloras associated with the common red. Appl Environ Microbiol 72:1118–1128

    PubMed  CAS  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    PubMed  Google Scholar 

  • Oses R, Valenzuela S, Freer J, Sanfuentes E, Rodriguez J (2008) Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Divers 33:77–86

    Google Scholar 

  • Pearson WR (1990) Rapid and sensitive sequence comparison with PASTP and FASTA. Meth Enzymol 183:63–98

    PubMed  CAS  Google Scholar 

  • Peláez F, Collado J, Arenal F, Basilio A, Cabello A, Díez-Matas MT, García JB, González del Val A, González V, Gorrochategui J, Hernández P, Martín I, Platas G, Vicente F (1998) Endophytic fungi from plants living on gypsum soils as source of secondary metabolites with antimicrobial activity. Mycol Res 102:755–761

    Google Scholar 

  • Peláez F, Cabello A, Platas G, Díez MT, González del Val A, Basilio A, Martán I, Vicente F, Bills GF, Giacobbe RA, Schwartz RE, Onishi JC, Meinz MS, Arbruzzo GK, Flattery AM, Kong L, Kurtz MB (2000) The discovery of enfumafungin, a novel antifungal compound produced by endophytic Hormonema species, biological activity and taxonomy of the producing organisms. Syst Appl Microbiol 23:333–343

    PubMed  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer-Verlag, New York, pp 179–197

    Google Scholar 

  • Pinnoi A, Lumyong S, Hyde KD, Jones EBG (2006) Biodiversity of fungi on the palm Eleiodoxa conferta in Sirindhorn peat swamp forest, Narathiwat, Thailand. Fungal Divers 22:205–218

    Google Scholar 

  • Pinruan U, Rung**damai N, Choeyklin R, Lumyong S, Hyde KD, Gareth Jones B (2010) Occurrence and diversity of basidiomycetous endophytes fron the oil palm, Elaeis guineensis in Thailand. Fungal Divers 41:71–88

    Google Scholar 

  • Polishook JD, Dombrowski AW, Tsou NN, Salituro GM, Curotto JE (1993) Preussomerin D from the endophyte Hormonema dematioides. Mycologia 85:62–64

    CAS  Google Scholar 

  • Polizzotto R, Musetti R, Martini M, Grisan S, Assante G, Andersen B (2008) Caratterizzazione di Alternaria spp endofita della vite. UMI 2008 Abstract XVII Convegno Nazionale di Micologia Pavia, 10-11-12 Novembre 2008

  • Rodolfi M, Legler SE, Picco AM (2006) Endofiti fungini di Vitis vinifera in Oltrepò Pavese. Micol Ital 35:25–31

    Google Scholar 

  • Rodolfi M, Picco AM, Valci L, Baronchelli CA (2008) Endofiti fungini in tessuti fogliari di Vitis vinifera L.: cultivar “Chardonnay” e “Cabernet Sauvignon” a confronto. UMI 2008 Abstract XVII Convegno Nazionale di Micologia Pavia, 10-11-12 Novembre 2008

  • Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376–385

    Google Scholar 

  • Rung**damai N, Pinruan U, Hoeyklin R, Hattori T, Jones EBG (2008) Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil plam, Elaeis guineensis, in Thailand. Fungal Divers 33:139–161

    Google Scholar 

  • Sakayaroj P, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45

    Google Scholar 

  • Sánchez S, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 27:171–195

    Google Scholar 

  • Sánchez S, Bills GF, Zabalgogeazcoa I (2008) Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87–100

    Google Scholar 

  • Sánchez S, Bills GF, Domínguez Acuña L, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41:115–123

    Google Scholar 

  • Sánchez-Torres P, González V, Hinarejos R, Tuset JJ (2008) Identification and characterization of fungi associated with esca in vineyards of the Comunidad Valenciana (Spain). Span J Agric Res 6(4):650–660

    Google Scholar 

  • Schena L, Ippolito A, Zahavi T, Cohen L, Nigro F, Droby S (1999) Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biol Technol 17:189–199

    CAS  Google Scholar 

  • Schena L, Nigro F, Pentimone I, Ligorio A, Ippolito A (2003) Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol 30:209–220

    Google Scholar 

  • Schultz BU, Wanke S, Draeger H, Aust H-J (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Google Scholar 

  • Schulz BU, Boyle C (2005) The endophyte continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Schweigkofler W, Prillinger H (1999) Molecular identification and phylogenetic analyses of endophytic and latent pathogenic fungi from grapevine. Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Früchteverwertung Austria 49:65–78

    CAS  Google Scholar 

  • Sieber TN, Sieber-Canavesi F, Dorworth CE (1991a) Endophytic fungi of red alder (Alnus rubra Bong.) leaves and twigs in British Columbia. Can J Bot 69:407–411

    Google Scholar 

  • Sieber TN, Sieber-Canavesi F, Petrini O, Ekramoddoullah, Dorworth CE (1991b) Characterization of Canadian and European Melanconium from some Alnus species by morphological, cultural and biochemical studies. Can J Bot 69:2170–2176

    Google Scholar 

  • Stone JK, Polishook JD, White JF Jr (2004) Endophytic fungi. In: Mueller G, Foster M, Bills G (eds) Biodiversity of fungi. Inventory and monitoring methods. Academic, Amsterdam, p 728

    Google Scholar 

  • Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333

    PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    PubMed  CAS  Google Scholar 

  • Sullivan RF, White JF Jr (2000) Phoma glomerata as a mycoparasite of powdery mildew. Appl Environ Microbiol 66:425–427

    PubMed  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    PubMed  CAS  Google Scholar 

  • Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttilä AM (2010) Root endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125–134

    Google Scholar 

  • Tiedemann S, Brendel G, Fehrmann H (1988) Investigations on endophytic fungi of grapevine with special emphasis on the vascular system of rootstocks. J Phytopathol 122:147–165

    Google Scholar 

  • Vicente MF, Basilio A, Cabello A, Peláez F (2002) Microbial natural products as a source of antifungals. Clin Microbiol Infect 9:15–32

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic, USA, pp 315–322

    Google Scholar 

  • Widler B, Müller E (1984) Untersuchungen über endophytische Pilze von Arctostaphylos uva-ursi (L.) Sprengel (Ericaceae). Bot Helv 94:307–337

    Google Scholar 

  • Wolock-Madej C, Clay K (1991) Avian seed preference and weight loss experiment: the role of fungal-infected fescue seeds. Oecologia 88:296–302

    Google Scholar 

  • Zabalgogeazcoa I (2008) Fungal endophytes and their interactions with plant pathogens. Spanish J Agric Res 6:138–146

    Google Scholar 

  • Zak JC, Willig MR (2004) Fungal biodiversity patterns. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi. Inventory and monitoring methods. Elsevier Academic, USA, pp 59–75

    Google Scholar 

Download references

Acknowledgements

This study has been supported by the research project FP08-AL02 (IMIDRA-Comunidad de Madrid), “Caracterización de la micoflora endofítica asociada a Vitis vinifera; su diversidad, distribución e implicación en la dinámica y etiología de las principales enfermedades asociadas al cultivo”.

The authors also thanks Dr. Fernando Peláez (CNIO-ISCIII, Spain) and Dr. Gonzalo Platas (Fundación Medina Andalucia, Spain) their helpful criticisms to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, V., Tello, M.L. The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Diversity 47, 29–42 (2011). https://doi.org/10.1007/s13225-010-0073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0073-x

Keywords

Navigation