Tau Pathology in Neurodegenerative Diseases

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

  • 1564 Accesses

Abstract

Aggregation and cellular accumulation of tau protein is a defining feature of tauopathies, a class of histopathologically and clinically heterogeneous neurodegenerative diseases. Tauopathies include diseases as diverse as Alzheimer’s disease (AD), Pick’s disease, progressive supranuclear palsy, corticobasal degeneration, and chronic traumatic encephalopathy. Tau pathology affects different cell types in various tauopathies and strongly correlates with clinical symptoms. The complexity of tau pathology and the structural diversity of tau aggregates in different tauopathies represent an active area of research in neurodegeneration. The initiation, spreading, and cellular clearance of tau pathology play important roles in the disease process of tauopathies. Spreading of tau pathology throughout the brain may underlie the progressive nature of these diseases. Understanding of mechanisms underlying the spreading of tau pathology between neurons and glial cells is essential for the development and use of emerging therapeutics and tau biomarkers. Recent biomarkers have enabled identification of the earliest stages of AD pathology and tracking the anatomical progression of tau pathology over time. An increasing number of tau-targeting therapeutics are entering clinical trials and might lead to the development of a treatment for these devastating neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vogels T, Leuzy A, Cicognola C et al (2020) Propagation of tau pathology: integrating insights from postmortem and in vivo studies. Biol Psychiatry 87(9):808–818. https://doi.org/10.1016/j.biopsych.2019.09.019

    Article  CAS  PubMed  Google Scholar 

  2. Prince M (2017) Progress on dementia-leaving no one behind. Lancet 390(10113):51–53. https://doi.org/10.1016/S0140-6736(17)31757-9

    Article  Google Scholar 

  3. Scheltens P, Blennow K, Breteler MMB et al (2017) Alzheimer’s disease. Lancet 388(10043):505–517. https://doi.org/10.1016/S0140-6736(15)01124-1

    Article  CAS  Google Scholar 

  4. Hoglinger GU, Respondek G, Kovacs GG (2018) New classification of tauopathies. Rev Neurol 174(9):664–668. https://doi.org/10.1016/j.neurol.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  5. Vogels T, Murgoci A-N, Hromadka T (2019) Intersection of pathological tau and microglia at the synapse. Acta Neuropathol Comm 7(1):109. https://doi.org/10.1186/s40478-019-0754-y

    Article  Google Scholar 

  6. Gomez-Isla T, Hollister R, West H et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41(1):17–24. https://doi.org/10.1002/ana.410410106

    Article  CAS  PubMed  Google Scholar 

  7. Arriagada PV, Growdon JH, Hedley-Whyte ET et al (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3):631–639

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21. https://doi.org/10.1038/nrn.2015.1

    Article  CAS  PubMed  Google Scholar 

  9. Zempel H, Mandelkow E (2014) Lost after translation: missorting of tau protein and consequences for Alzheimer disease. Trends Neurosci 37(12):721–732. https://doi.org/10.1016/j.tins.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  10. Narasimhan S, Changolkar L, Riddle DM et al (2020) Human tau pathology transmits glial tau aggregates in the absence of neuronal tau. J Exp Med 217(2):e20190783. https://doi.org/10.1084/jem.20190783

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Chen K, Sloan SA et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sotiropoulos I, Galas MC, Silva JM et al (2017) Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathol Comm 5(1):91. https://doi.org/10.1186/s40478-017-0489-6

    Article  CAS  Google Scholar 

  13. Kent SA, Spires-Jones TL, Durrant CS (2020) The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol 140(4):417–447. https://doi.org/10.1007/s00401-020-02196-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gibbons GS, Lee VMY, Trojanowski JQ (2018) Mechanisms of cell-to-cell transmission of pathological tau: A Review. JAMA Neurol 76(1):101–108. https://doi.org/10.1001/jamaneurol.2018.2505

    Article  Google Scholar 

  15. Jeganathan S, von Bergen M, Brutlach H et al (2006) Global hairpin folding of tau in solution. Biochemistry 45(7):2283–2293. https://doi.org/10.1021/bi0521543

    Article  CAS  PubMed  Google Scholar 

  16. Wesseling H, Mair W, Kumar M et al (2020) Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183(6):1699–1713. https://doi.org/10.1016/j.cell.2020.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133(5):665–704. https://doi.org/10.1007/s00401-017-1707-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. von Bergen M, Friedhoff P, Biernat J et al (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. PNAS 97(10):5129–5134

    Article  Google Scholar 

  19. von Bergen M, Barghorn S, Li L et al (2001) Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J Biol Chem 276(51):48165–48174. https://doi.org/10.1074/jbc.M105196200

    Article  Google Scholar 

  20. Mirbaha H, Chen D, Morazova OA et al (2018) Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife 7:e36584. https://doi.org/10.7554/eLife.36584

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kundel F, Hong L, Falcon B et al (2018) Measurement of tau filament fragmentation provides insights into prion-like spreading. ACS Chem Neurosci 9(6):1276–1282. https://doi.org/10.1021/acschemneuro.8b00094

    Article  CAS  PubMed  Google Scholar 

  22. Marreiro A, Van Kolen K, Sousa C et al (2020) Comparison of size distribution and (Pro249-Ser258) epitope exposure in in vitro and in vivo derived tau fibrils. BMC Mol and Cell Biol 21(1):81. https://doi.org/10.1186/s12860-020-00320-y

    Article  CAS  Google Scholar 

  23. Falcon B, Cavallini A, Angers R et al (2015) Conformation determines the seeding potencies of native and recombinant Tau aggregates. J Biol Chem 290(2):1049–1065. https://doi.org/10.1074/jbc.M114.589309

    Article  CAS  PubMed  Google Scholar 

  24. Dujardin S, Commins C, Lathuiliere A et al (2020) Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med 26(8):1256–1263. https://doi.org/10.1038/s41591-020-0938-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crowther T, Goedert M, Wischik CM (1989) The repeat region of microtubule-associated protein tau forms part of the core of the paired helical filament of Alzheimer’s disease. Ann Med 21(2):127–132

    Article  CAS  PubMed  Google Scholar 

  26. Wischik CM, Novak M, Edwards PC et al (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. PNAS 85(13):4884–4888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yagishita S, Itoh Y, Nan W et al (1981) Reappraisal of the fine structure of Alzheimer’s neurofibrillary tangles. Acta Neuropathol 54(3):239–246

    Article  CAS  PubMed  Google Scholar 

  28. Fitzpatrick AWP, Falcon B, He S et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547(7662):185–190. https://doi.org/10.1038/nature23002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Falcon B, Zhang W, Schweighauser M et al (2018) Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol 136(5):699–708. https://doi.org/10.1007/s00401-018-1914-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Falcon B, Zivanov J, Zhang W et al (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568(7752):420–423. https://doi.org/10.1038/s41586-019-1026-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Falcon B, Zhang W, Murzin AG et al (2018) Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561(7721):137–140. https://doi.org/10.1038/s41586-018-0454-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang W, Tarutani A, Newell KL et al (2020) Novel tau filament fold in corticobasal degeneration. Nature 580(7802):283–287. https://doi.org/10.1038/s41586-020-2043-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arakhamia T, Lee CE, Carlomagno Y et al (2020) Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180(4):633–644.e12. https://doi.org/10.1016/j.cell.2020.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang W, Falcon B, Murzin AG et al (2018) Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s disease. BioRxiv:468892. https://doi.org/10.1101/468892

  35. Sharma AM, Thomas TL, Woodard DR et al (2018) Tau monomer encodes strains. eLife 7:e37813. https://doi.org/10.7554/eLife.37813

    Article  PubMed  PubMed Central  Google Scholar 

  36. Heckman MG, Brennan RR, Labbe C et al (2019) Association of MAPT subhaplotypes with risk of progressive supranuclear palsy and severity of tau pathology. JAMA Neurol 76(6):710–717. https://doi.org/10.1001/jamaneurol.2019.0250

    Article  PubMed  PubMed Central  Google Scholar 

  37. Myer AJ, Pittman AM, Zhao AS et al (2007) The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 25(3):561–570. https://doi.org/10.1016/j.nbd.2006.10.018

    Article  CAS  Google Scholar 

  38. Rovelet-Lecrux A, Hannequin D, Guillin O et al (2010) Frontotemporal dementia phenotype associated with MAPT gene duplication. J Alzheimers Dis 21(3):897–902. https://doi.org/10.3233/JAD-2010-100441

    Article  CAS  PubMed  Google Scholar 

  39. Le Guennec K, Quenez O, Nicolas G et al (2017) 17q21.31 duplication causes prominent tau-related dementia with increased MAPT expression. Mol Psychiatry 22(8):1119–1125. https://doi.org/10.1038/mp.2016.226

    Article  CAS  PubMed  Google Scholar 

  40. Chen Z, Chen JA, Shatunov A et al (2019) Genome-wide survey of copy number variants finds MAPT duplications in progressive supranuclear palsy. Movement Disord 34(7):1049–1059. https://doi.org/10.1002/mds.27702

    Article  CAS  PubMed  Google Scholar 

  41. Huin V, Deramecourt V, Caparros-Lefebvre D et al (2016) The MAPT gene is differentially methylated in the progressive supranuclear palsy brain. Movement Disord 31(12):1883–1890. https://doi.org/10.1002/mds.26820

    Article  CAS  PubMed  Google Scholar 

  42. Andorfer C, Kress Y, Espinoza M et al (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86(3):582–590

    Article  CAS  PubMed  Google Scholar 

  43. Strang KH, Golde TE, Giasson BI (2019) MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Investig 99(7):912–928. https://doi.org/10.1038/s41374-019-0197-x

    Article  PubMed  Google Scholar 

  44. Rizzu P, Van Swieten JC, Joosse M et al (1999) High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Hum Genet 64(2):414–421. https://doi.org/10.1086/302256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Di Primio C, Quercioli V, Siano G et al (2017) The distance between N and C termini of tau and of FTDP-17 mutants Is modulated by microtubule interactions in living cells. Front Mol Neurosci 10:210. https://doi.org/10.3389/fnmol.2017.00210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hutton M, Lendon CL, Rizzu P et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705. https://doi.org/10.1038/31508

    Article  CAS  PubMed  Google Scholar 

  47. Hong M, Zhukareva V, Vogelsberg-Ragaglia V et al (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282(5395):1914–1917

    Article  CAS  PubMed  Google Scholar 

  48. Gotz J, Bodea LG, Goedert M (2018) Rodent models for Alzheimer disease. Nat Rev Neurosci 19(10):583–598. https://doi.org/10.1038/s41583-018-0054-8

    Article  CAS  PubMed  Google Scholar 

  49. Daude N, Kim C, Kang SG et al (2020) Diverse, evolving conformer populations drive distinct phenotypes in frontotemporal lobar degeneration caused by the same MAPT-P301L mutation. Acta Neuropathol 139(6):1045–1070. https://doi.org/10.1007/s00401-020-02148-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Drombosky KW, Chen D, Woodard D et al (2018) Native tau structure is disrupted by disease-associated mutations that promote aggregation. BioRxiv:330266. https://doi.org/10.1101/330266

  51. Ambadipudi S, Biernat J, Riedel D et al (2017) Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau. Nat Commun 8(1):275. https://doi.org/10.1038/s41467-017-00480-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wegmann S, Eftekharzadeh B, Tepper K et al (2018) Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J 37(7):e98049. https://doi.org/10.15252/embj.201798049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fichou Y, Lin Y, Rauch JN et al (2018) Cofactors are essential constituents of stable and seeding-active tau fibrils. PNAS 115(52):13234–13239. https://doi.org/10.1073/pnas.1810058115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kametani F, Yoshida M, Matsubara T et al (2020) Comparison of common and disease-specific post-translational modifications of pathological tau associated with a wide range of tauopathies. Front Neurosci 14:1110. https://doi.org/10.3389/fnins.2020.581936

    Article  Google Scholar 

  55. Li L, Jiang Y, Hu W, Tung YC et al (2019) Pathological alterations of tau in Alzheimer’s disease and 3xTg-AD mouse brains. Mol Neurobiol 56(9):6168–6183. https://doi.org/10.1007/s12035-019-1507-4

    Article  CAS  PubMed  Google Scholar 

  56. Courade JP, Angers R, Mairet-Coello G et al (2018) Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol 136(5):729–745. https://doi.org/10.1007/s00401-018-1911-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Derisbourg M, Leghay C, Chiappetta G et al (2015) Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci Rep 5:9659. https://doi.org/10.1038/srep09659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Novak M, Kabat J, Wischik CM (1993) Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J 12(1):365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nicholls SB, DeVos SL, Commins C et al (2017) Characterization of TauC3 antibody and demonstration of its potential to block tau propagation. PLoS One 12(5):e0177914. https://doi.org/10.1371/journal.pone.0177914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zilka N, Kovacech B, Barath P et al (2012) The self-perpetuating tau truncation circle. Biochem Soc T 40(4):681–686. https://doi.org/10.1042/BST20120015

    Article  CAS  Google Scholar 

  61. Vogels T, Vargová G, Brezováková V et al (2020) Viral delivery of non-mutated human truncated tau to neurons recapitulates key features of human tauopathy in wild-type mice. J Alzheimers Dis 77(2):551–568. https://doi.org/10.3233/JAD-200047

    Article  CAS  PubMed  Google Scholar 

  62. de Calignon A, Fox LM, Pitstick R et al (2010) Caspase activation precedes and leads to tangles. Nature 464(7292):1201–1204. https://doi.org/10.1038/nature08890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang YP, Biernat J, Pickhardt M et al (2007) Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. PNAS 104(24):10252–10257. https://doi.org/10.1073/pnas.0703676104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bodea LG, Evans HT, Van der Jeugd A et al (2017) Accelerated aging exacerbates a pre-existing pathology in a tau transgenic mouse model. Aging Cell 16(2):377–386. https://doi.org/10.1111/acel.12565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kundra R, Ciryam P, Morimoto RI et al (2017) Protein homeostasis of a metastable subproteome associated with Alzheimer’s disease. PNAS 114(28):5703–5711. https://doi.org/10.1073/pnas.1618417114

    Article  CAS  Google Scholar 

  66. Wang P, Joberty G, Buist A et al (2017) Tau interactome map** based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol 133(5):731–749. https://doi.org/10.1007/s00401-016-1663-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Chen X, Zhao Y et al (2017) The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease. Rev Neurosci 28(8):861–868. https://doi.org/10.1515/revneuro-2017-0013

    Article  CAS  PubMed  Google Scholar 

  68. Kim E, Sakata K, Liao FF (2017) Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation. PLoS Genet 13(7):e1006849. https://doi.org/10.1371/journal.pgen.1006849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shelton LB, Baker JD, Zheng D et al (2017) Hsp90 activator Aha1 drives production of pathological tau aggregates. PNAS 114(36):9707–9712. https://doi.org/10.1073/pnas.1707039114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Darwich NF, Phan JM, Kim B et al (2020) Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Science 370(6519):eaay8826. https://doi.org/10.1126/science.aay8826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoozemans JJM, van Haastert ES, Nijholt DAT et al (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251. https://doi.org/10.2353/ajpath.2009.080814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu YH, Wei W, Yin J et al (2009) Proteasome inhibition increases tau accumulation independent of phosphorylation. Neurobiol Aging 30(12):1949–1961. https://doi.org/10.1016/j.neurobiolaging.2008.02.012

    Article  CAS  PubMed  Google Scholar 

  73. Keck S, Nitsch R, Grune T et al (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85(1):115–122

    Article  CAS  PubMed  Google Scholar 

  74. Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235(4796):1641–1644

    Article  CAS  PubMed  Google Scholar 

  75. Tai HC, Serrano-Pozo A, Hashimoto T et al (2012) The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 181(4):1426–1435. https://doi.org/10.1016/j.ajpath.2012.06.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chastagner P, Loria F, Vargas JY et al (2020) Fate and propagation of endogenously formed Tau aggregates in neuronal cells. EMBO Mol Med 12:e12025. https://doi.org/10.15252/emmm.202012025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Goo MS, Sancho L, Slepak N et al (2017) Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J Cell Biol 216(8):2499–2513. https://doi.org/10.1083/jcb.201704068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Inoue K, Rispoli J, Yang L et al (2013) Coordinate regulation of mature dopaminergic axon morphology by macroautophagy and the PTEN signaling pathway. PLoS Genet 9(10):e1003845. https://doi.org/10.1371/journal.pgen.1003845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hernandez D, Torres CA, Setlik W et al (2012) Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74(2):277–284. https://doi.org/10.1016/j.neuron.2012.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Akwa Y, Gondard E, Mann A et al (2017) Synaptic activity protects against AD and FTD-like pathology via autophagic-lysosomal degradation. Mol Psychiatry 23(6):1530–1540. https://doi.org/10.1038/mp.2017.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kimura T, Suzuki M, Akagi T (2017) Age-dependent changes in synaptic plasticity enhance tau oligomerization in the mouse hippocampus. Acta Neuropathol Comm 5(1):67. https://doi.org/10.1186/s40478-017-0469-x

    Article  CAS  Google Scholar 

  82. Jiang S, Bhaskar (2020) Degradation and transmission of tau by autophagic-endolysosomal networks and potential therapeutic targets for tauopathy. Front Mol Neurosci 13:586731. https://doi.org/10.3389/fnmol.2020.586731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wiersma VI, van Ziel AM, Vazquez-Sanchez S et al (2019) Granulovacuolar degeneration bodies are neuron-selective lysosomal structures induced by intracellular tau pathology. Acta Neuropathol 138(6):943–970. https://doi.org/10.1007/s00401-019-02046-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Puladi B, Dinekov M, Arzberger T et al (2020) The relation between tau pathology and granulovacuolar degeneration of neurons. Neurobiol Dis 147:105138. https://doi.org/10.1016/j.nbd.2020.105138

    Article  CAS  PubMed  Google Scholar 

  85. Wiersma VI, Hoozemans JJM, Scheper W (2020) Untangling the origin and function of granulovacuolar degeneration bodies in neurodegenerative proteinopathies. Acta Neuropathol Comm 8(1):153. https://doi.org/10.1186/s40478-020-00996-5

    Article  Google Scholar 

  86. Thal DR, Del Tredici K, Ludolph AC et al (2011) Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 122(5):577–589. https://doi.org/10.1007/s00401-011-0871-6

    Article  CAS  PubMed  Google Scholar 

  87. Koper MJ, Van Schoor E, Ospitalieri S et al (2020) Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease. Acta Neuropathol 139(3):463–484. https://doi.org/10.1007/s00401-019-02103-y

    Article  CAS  PubMed  Google Scholar 

  88. Hou X, Watzlawik JO, Cook C et al (2020) Mitophagy alterations in Alzheimer’s disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimers Dement. https://doi.org/10.1002/alz.12198

  89. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  90. Nelson PT, Alafuzoff I, Bigio EH et al (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropath Exp Neur 71(5):362–381. https://doi.org/10.1097/NEN.0b013e31825018f7

    Article  PubMed  Google Scholar 

  91. Scholl M, Lockhart SN, Schonhaut DR et al (2016) PET imaging of tau deposition in the aging human brain. Neuron 89(5):971–982. https://doi.org/10.1016/j.neuron.2016.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kovacs GG, Lukic MJ, Irwin DJ et al (2020) Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol 140(2):99–119. https://doi.org/10.1007/s00401-020-02158-2

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kovacs GG, **e SX, Robinson JL et al (2018) Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathol Comm 6:50. https://doi.org/10.1186/s40478-018-0552-y

    Article  CAS  Google Scholar 

  94. Alosco ML, Cherry JD, Huber BR et al (2020) Characterizing tau deposition in chronic traumatic encephalopathy (CTE): utility of the McKee CTE staging scheme. Acta Neuropathol 140(4):495–512. https://doi.org/10.1007/s00401-020-02197-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim EJ, Hwang JHL, Gaus SE et al (2020) Evidence of corticofugal tau spreading in patients with frontotemporal dementia. Acta Neuropathol 139(1):27–43. https://doi.org/10.1007/s00401-019-02075-z

    Article  CAS  PubMed  Google Scholar 

  96. Schwarz AJ, Yu P, Miller BB et al (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139(Pt 5):1539–1550. https://doi.org/10.1093/brain/aww023

    Article  PubMed  Google Scholar 

  97. Lowe VJ, Wiste HJ, Senjem ML et al (2018) Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia. Brain 141(1):271–287. https://doi.org/10.1093/brain/awx320

    Article  PubMed  Google Scholar 

  98. Vogel JW, Iturria-Medina Y, Strandberg OT et al (2020) Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat Commun 11(1):2612. https://doi.org/10.1038/s41467-020-15701-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Franzmeier N, Neitzel J, Rubinski A et al (2020) Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease. Nat Commun 11(1):347. https://doi.org/10.1038/s41467-019-14159-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Franzmeier N, Dewenter A, Frontzkowski L et al (2020) Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer’s disease. Sci Adv 6(48):eabd1327. https://doi.org/10.1126/sciadv.abd1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kaufman SK, Thomas TL, Del Tredici K et al (2017) Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue. Acta Neuropathol Comm 5(1):41. https://doi.org/10.1186/s40478-017-0442-8

    Article  CAS  Google Scholar 

  102. Kaufman SK, Del Tredici K, Thomas TL et al (2018) Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART. Acta Neuropathol 136(1):57–67. https://doi.org/10.1007/s00401-018-1855-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. DeVos SL, Corjuc BT, Oakley DH et al (2018) Synaptic tau seeding precedes tau pathology in human Alzheimer’s disease Brain. Front Neurosci 12:267. https://doi.org/10.3389/fnins.2018.00267

    Article  PubMed  PubMed Central  Google Scholar 

  104. Frost B, Jacks RL, Diamond MI (2009) Propagation of Tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852. https://doi.org/10.1074/jbc.M808759200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo JL, Lee VMY (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286(17):15317–15331. https://doi.org/10.1074/jbc.M110.209296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kfoury N, Holmes BB, Jiang H et al (2012) Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem 287(23):19440–19451. https://doi.org/10.1074/jbc.M112.346072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Santa-Maria I, Varghese M, Ksiezak-Reding H et al (2012) Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes. J Biol Chem 287(24):20522–20533. https://doi.org/10.1074/jbc.M111.323279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Clavaguera F, Bolmont T, Crowther RA et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913. https://doi.org/10.1038/ncb1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U et al (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2:700. https://doi.org/10.1038/srep00700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Iba M, Guo JL, McBride JD et al (2013) Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci 33(3):1024–1037. https://doi.org/10.1523/JNEUROSCI.2642-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Albert M, Mairet-Coello G, Danis C et al (2019) Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain 142(6):1736–1750. https://doi.org/10.1093/brain/awz100

    Article  PubMed  PubMed Central  Google Scholar 

  112. de Calignon A, Polydoro M, Suarez-Calvet M et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73(4):685–697. https://doi.org/10.1016/j.neuron.2011.11.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harris JA, Koyama A, Maeda S et al (2012) Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits. PLoS One 7(9):e45881. https://doi.org/10.1371/journal.pone.0045881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu L, Drouet V, Wu JW et al (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7(2):e31302. https://doi.org/10.1371/journal.pone.0031302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wegmann S, Maury EA, Kirk MJ et al (2015) Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO J 34(24):3028–3041. https://doi.org/10.15252/embj.201592748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wegmann S, Bennett RE, Delorme L et al (2019) Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv 5(6):eaaw6404. https://doi.org/10.1126/sciadv.aaw6404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ahmed Z, Cooper J, Murray TK et al (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol 127(5):667–683. https://doi.org/10.1007/s00401-014-1254-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McAllister BB, Lacoursiere SG, Sutherland RJ et al (2020) Intracerebral seeding of amyloid-β and tau pathology in mice: factors underlying prion-like spreading and comparisons with α-synuclein. Neurosci Biobehav Rev 112:1–27. https://doi.org/10.1016/j.neubiorev.2020.01.026

    Article  CAS  PubMed  Google Scholar 

  119. Guo JL, Narasimhan S, Changolkar L et al (2016) Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J Exp Med 213(12):2635–2654. https://doi.org/10.1084/jem.20160833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Calafate S, Buist A, Miskiewicz K et al (2015) Synaptic contacts enhance cell-to-cell Tau pathology propagation. Cell Rep 11(8):1176–1183. https://doi.org/10.1016/j.celrep.2015.04.043

    Article  CAS  PubMed  Google Scholar 

  121. Takeda S, Wegmann S, Cho H et al (2015) Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat Commun 6:8490. https://doi.org/10.1038/ncomms9490

    Article  CAS  PubMed  Google Scholar 

  122. Wu JW, Herman M, Liu L et al (2013) Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288(3):1856–1870. https://doi.org/10.1074/jbc.M112.394528

    Article  CAS  PubMed  Google Scholar 

  123. Dujardin S, Lécolle K, Caillierez R et al (2014) Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol Comm 2:14. https://doi.org/10.1186/2051-5960-2-14

    Article  Google Scholar 

  124. Wu JW, Hussaini SA, Bastille IM et al (2016) Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 19(8):1085–1092. https://doi.org/10.1038/nn.4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang Y, Balaji V, Kaniyappan S et al (2017) The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener 12(1):5. https://doi.org/10.1186/s13024-016-0143-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nobuhara CK, DeVos SL, Commins C et al (2017) Tau antibody-targeting pathological species block neuronal uptake and interneuron propagation of tau in vitro. Am J Pathol 187(6):1399–1412. https://doi.org/10.1016/j.ajpath.2017.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Katsikoudi A, Ficulle E, Cavallini A et al (2020) Quantitative propagation of assembled human tau from Alzheimer’s disease brain in microfluidic neuronal cultures. J Biol Chem 295(37):13079–13093. https://doi.org/10.1074/jbc.RA120.013325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tai HC, Wang BY, Serrano-Pozo A et al (2014) Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer’s disease. Acta Neuropathol Comm 2:146. https://doi.org/10.1186/s40478-014-0146-2

    Article  Google Scholar 

  129. Hallinan GI, Vargas-Caballero M, West J et al (2019) Tau misfolding efficiently propagates between individual intact hippocampal neurons. J Neurosci 39(48):9623–9632. https://doi.org/10.1523/JNEUROSCI.1590-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pooler AM, Phillips EC, Lau DHW et al (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14(4):389–394. https://doi.org/10.1038/embor.2013.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yamada K, Holth JK, Liao F et al (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211(3):387–393. https://doi.org/10.1084/jem.20131685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sokolow S, Henkins KM, Bilousova T et al (2015) Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer’s disease. J Neurochem 133(3):368–379. https://doi.org/10.1111/jnc.12991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chai X, Dage JL, Citron M (2012) Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis 48(3):356–366. https://doi.org/10.1016/j.nbd.2012.05.021

    Article  CAS  PubMed  Google Scholar 

  134. Merezhko M, Brunello CA, Yan X et al (2018) Secretion of tau via an unconventional non-vesicular mechanism. Cell Rep 25(8):2027–2035.e4. https://doi.org/10.1016/j.celrep.2018.10.078

    Article  CAS  PubMed  Google Scholar 

  135. Katsinelos T, Zeitler M, Dimou E et al (2018) Unconventional secretion mediates the trans-cellular spreading of tau. Cell Rep 23(7):2039–2055. https://doi.org/10.1016/j.celrep.2018.04.056

    Article  CAS  PubMed  Google Scholar 

  136. Pérez M, Avila J, Hernández F (2019) Propagation of tau via extracellular vesicles. Front Neurosci 13:698. https://doi.org/10.3389/fnins.2019.00698

    Article  PubMed  PubMed Central  Google Scholar 

  137. Abounit S, Wu JW, Duff K et al (2016) Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion 10(5):344–351. https://doi.org/10.1080/19336896.2016.1223003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tardivel M, Begard S, Bousset L et al (2016) Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological tau protein assemblies. Acta Neuropathol Comm 4(1):117. https://doi.org/10.1186/s40478-016-0386-4

    Article  CAS  Google Scholar 

  139. Alarcon-Martinez L, Villafranca-Baughman D, Quintero H et al (2020) Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 585(7823):91–95. https://doi.org/10.1038/s41586-020-2589-x

    Article  CAS  PubMed  Google Scholar 

  140. Holmes BB, DeVos SL, Kfoury N et al (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. PNAS 110(33):E3138–E3147. https://doi.org/10.1073/pnas.1301440110

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mirbaha H, Holmes BB, Sanders DW et al (2015) Tau trimers are the minimal propagation unit spontaneously internalized to seed intracellular aggregation. J Biol Chem 290(24):14893–14903. https://doi.org/10.1074/jbc.M115.652693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Funk KE, Mirbaha H, Jiang H et al (2015) Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J Biol Chem 290(35):21652–21662. https://doi.org/10.1074/jbc.M115.657924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rauch JN, Chen JJ, Sorum AW et al (2018) Tau internalization is regulated by 6-O sulfation on heparan sulfate proteoglycans (HSPGs). Sci Rep 8(1):6382. https://doi.org/10.1038/s41598-018-24904-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Stopschinski BE, Holmes BB, Miller GM et al (2018) Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau vs. alpha-synuclein and beta-amyloid aggregates. J Biol Chem 293(27):10826–10840. https://doi.org/10.1074/jbc.RA117.000378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Weisová P, Cehlár O, Škrabana R et al (2019) Therapeutic antibody targeting microtubule-binding domain prevents neuronal internalization of extracellular tau via masking neuron surface proteoglycans. Acta Neuropathol Comm 7(1):129. https://doi.org/10.1186/s40478-019-0770-y

    Article  CAS  Google Scholar 

  146. Hudák A, Kusz E, Domonkos I et al (2019) Contribution of syndecans to cellular uptake and fibrillation of α-synuclein and tau. Sci Rep 9(1):16543. https://doi.org/10.1038/s41598-019-53038-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhao J, Zhu Y, Song X et al (2020) 3-O-sulfation of heparan sulfate enhances tau interaction and cellular uptake. Angew Chem Int Edit 59(5):1818–1827. https://doi.org/10.1002/anie.201913029

    Article  CAS  Google Scholar 

  148. Puangmalai N, Bhatt N, Montalbano M et al (2020) Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer’s disease, progressive supranuclear palsy and dementia with Lewy bodies. Cell Death Dis 11(5):314. https://doi.org/10.1038/s41419-020-2503-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Stopschinski BE, Thomas TL, Nadji S et al (2020) A synthetic heparinoid blocks Tau aggregate cell uptake and amplification. J Biol Chem 295(10):2974–2983. https://doi.org/10.1074/jbc.RA119.010353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kanekiyo T, Zhang J, Liu Q et al (2011) Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake. J Neurosci 31(5):1644–1651. https://doi.org/10.1523/JNEUROSCI.5491-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rauch JN, Luna G, Guzman E et al (2020) LRP1 is a master regulator of tau uptake and spread. Nature 580(7803):381–385. https://doi.org/10.1038/s41586-020-2156-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Evans LD, Strano A, Campbell A et al (2020) Whole genome CRISPR screens identify LRRK2-regulated endocytosis as a major mechanism for extracellular tau uptake by human neurons. BioRxiv 2020.08.11.246363. https://doi.org/10.1101/2020.08.11.246363

  153. Cooper JM, Lathuiliere A, Migliorini M et al (2020) LRP1 and SORL1 regulate tau internalization and degradation and enhance tau seeding. BioRxiv 2020.11.17.386581. https://doi.org/10.1101/2020.11.17.386581

  154. De Cecco E, Celauro L, Vanni S et al (2020) The uptake of tau amyloid fibrils is facilitated by the cellular prion protein and hampers prion propagation in cultured cells. J Neurochem 155(5):577–591. https://doi.org/10.1111/jnc.15040

    Article  CAS  PubMed  Google Scholar 

  155. Takahashi M, Miyata H, Kametani F et al (2015) Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau. Acta Neuropathol 129(6):895–907. https://doi.org/10.1007/s00401-015-1415-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Morozova V, Cohen LS, Makki AEH et al (2019) Normal and pathological tau uptake mediated by M1/M3 muscarinic receptors promotes opposite neuronal changes. Front Cell Neurosci 13:403. https://doi.org/10.3389/fncel.2019.00403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Corbett GT, Wang Z, Hong W et al (2020) PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol 139(3):503–526. https://doi.org/10.1007/s00401-019-02114-9

    Article  CAS  PubMed  Google Scholar 

  158. Zhong Z, Grasso L, Sibilla C et al (2018) Prion-like protein aggregates exploit the RHO GTPase to cofilin-1 signaling pathway to enter cells. EMBO J 37(6). https://doi.org/10.15252/embj.201797822

  159. Evans LD, Wassmer T, Fraser G et al (2018) Extracellular monomeric and aggregated Tau efficiently enter human neurons through overlap** but distinct pathways. Cell Rep 22(13):3612–3624. https://doi.org/10.1016/j.celrep.2018.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Calafate S, Flavin W, Verstreken P et al (2016) Loss of Bin1 promotes the propagation of tau pathology. Cell Rep 17(4):931–940. https://doi.org/10.1016/j.celrep.2016.09.063

    Article  CAS  PubMed  Google Scholar 

  161. Flavin WP, Bousset L, Green ZC et al (2017) Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins. Acta Neuropathol 134(4):629–653. https://doi.org/10.1007/s00401-017-1722-x

    Article  CAS  PubMed  Google Scholar 

  162. Chen JJ, Nathaniel DL, Raghavan P et al (2019) Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J Biol Chem 294(50):18952–18966. https://doi.org/10.1074/jbc.RA119.009432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ugbode C, Fort-Aznar L, Sweeney ST (2019) Leaky endosomes push tau over the seed limit. J Biol Chem 294(50):18967–18968. https://doi.org/10.1074/jbc.H119.011687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Falcon B, Noad J, McMahon H et al (2017) Galectin-8-mediated selective autophagy protects against seeded tau aggregation. J Biol Chem 293(7):2438–2451. https://doi.org/10.1074/jbc.M117.809293

    Article  PubMed  PubMed Central  Google Scholar 

  165. Takeda S, Commins C, DeVos SL et al (2016) Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer’s disease mouse model and human patients. Ann Neurol 80(3):355–367. https://doi.org/10.1002/ana.24716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Barini E, Plotzky G, Mordashova Y et al (2020) Tau in the brain interstitial fluid is fragmented and seeding-competent. BioRxiv 2020.07.15.205724. https://doi.org/10.1101/2020.07.15.205724

  167. Asai H, Ikezu S, Tsunoda S et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18(11):1584–1593. https://doi.org/10.1038/nn.4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zilkova M, Nolle A, Kovacech B et al (2020) Humanized tau antibodies promote tau uptake by human microglia without any increase of inflammation. Acta Neuropathol Comm 8(1):74. https://doi.org/10.1186/s40478-020-00948-z

    Article  CAS  Google Scholar 

  169. Hopp SC, Lin Y, Oakley D et al (2018) The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflamm 15(1):269. https://doi.org/10.1186/s12974-018-1309-z

    Article  CAS  Google Scholar 

  170. Ruan Z, Delpech JC, Venkatesan Kalavai S et al (2020) P2RX7 inhibitor suppresses exosome secretion and disease phenotype in P301S tau transgenic mice. Mol Neurodegener 15(1):47. https://doi.org/10.1186/s13024-020-00396-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Crotti A, Sait HR, McAvoy KM et al (2019) BIN1 favors the spreading of Tau via extracellular vesicles. Sci Rep 9(1):9477. https://doi.org/10.1038/s41598-019-45676-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Perea JR, Lopez E, Diez-Ballesteros JC et al (2019) Extracellular monomeric tau is internalized by astrocytes. Front Neurosci 13:442. https://doi.org/10.3389/fnins.2019.00442

    Article  PubMed  PubMed Central  Google Scholar 

  173. Piacentini R, Li Puma DD, Mainardi M et al (2017) Reduced gliotransmitter release from astrocytes mediates tau-induced synaptic dysfunction in cultured hippocampal neurons. Glia 65(8):1302–1316. https://doi.org/10.1002/glia.23163

    Article  PubMed  PubMed Central  Google Scholar 

  174. Martini-Stoica H, Cole AL, Swartzlander DB et al (2018) TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading. J Exp Med 215(9):2355–2377. https://doi.org/10.1084/jem.20172158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nedergaard M, Goldman SA (2020) Glymphatic failure as a final common pathway to dementia. Science 370(6512):50–56. https://doi.org/10.1126/science.abb8739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Patel TK, Habimana-Griffin L, Gao X et al (2019) Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol Neurodegener 14(1):11. https://doi.org/10.1186/s13024-019-0312-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Harrison IF, Ismail O, Machhada A et al (2020) Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143(8):2576–2593. https://doi.org/10.1093/brain/awaa179

    Article  PubMed  PubMed Central  Google Scholar 

  178. Iliff JJ, Chen MJ, Plog BA et al (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34(49):16180–16193. https://doi.org/10.1523/JNEUROSCI.3020-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pooler AM, Polydoro M, Maury EA et al (2015) Amyloid accelerates tau propagation and toxicity in a model of early Alzheimer’s disease. Acta Neuropathol Comm 3:14. https://doi.org/10.1186/s40478-015-0199-x

    Article  CAS  Google Scholar 

  180. He Z, Guo JL, McBride JD et al (2018) Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24(1):29–38. https://doi.org/10.1038/nm.4443

    Article  CAS  PubMed  Google Scholar 

  181. Vergara C, Houben S, Suain V et al (2019) Amyloid-beta pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol 137(3):397–412. https://doi.org/10.1007/s00401-018-1953-5

    Article  CAS  PubMed  Google Scholar 

  182. Saito T, Mihira N, Matsuba Y et al (2019) Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. J Biol Chem 294(34):12754–12765. https://doi.org/10.1074/jbc.RA119.009487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ehrenberg AJ, Khatun A, Coomans E et al (2020) Relevance of biomarkers across different neurodegenerative diseases. Alzheimers Res Ther 12(1):56. https://doi.org/10.1186/s13195-020-00601-w

    Article  PubMed  PubMed Central  Google Scholar 

  184. Karikari TK, Benedet AL, Ashton NJ et al (2020) Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer’s disease neuroimaging initiative. Mol Psychiatry. https://doi.org/10.1038/s41380-020-00923-z

  185. Young PNE, Estarellas M, Coomans E et al (2020) Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther 12(1):49. https://doi.org/10.1186/s13195-020-00612-7

    Article  PubMed  PubMed Central  Google Scholar 

  186. Mattay VS, Fotenos AF, Ganley CJ et al (2020) Brain tau imaging: Food and Drug Administration approval of (18)F-Flortaucipir injection. J Nucl Med 61:1411–1412. https://doi.org/10.2967/jnumed.120.252254

    Article  PubMed  Google Scholar 

  187. Brendel M, Barthel H, van Eimeren T et al (2020) Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol 77(11):1408–1419. https://doi.org/10.1001/jamaneurol.2020.2526

    Article  PubMed  Google Scholar 

  188. Tagai K, Ono M, Kubota M et al (2020) High-contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies. Neuron 16:S0896-6273(20)30766-2. https://doi.org/10.1016/j.neuron.2020.09.042

    Article  CAS  Google Scholar 

  189. Karikari TK, Pascoal TA, Ashton NJ et al (2020) Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol 19(5):422–433. https://doi.org/10.1016/S1474-4422(20)30071-5

    Article  CAS  PubMed  Google Scholar 

  190. Thijssen EH, La Joie R, Wolf A et al (2020) Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med 26(3):387–397. https://doi.org/10.1038/s41591-020-0762-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Janelidze S, Mattsson N, Palmqvist S et al (2020) Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med 26(3):379–386. https://doi.org/10.1038/s41591-020-0755-1

    Article  CAS  PubMed  Google Scholar 

  192. Mielke MM, Hagen CE, Xu J et al (2018) Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement 14(8):989–997. https://doi.org/10.1016/j.jalz.2018.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  193. Mattsson-Carlgren N, Janelidze S, Palmqvist S et al (2020) Longitudinal plasma p-tau217 is increased in early stages of Alzheimer’s disease. Brain 143(11):3234–3241. https://doi.org/10.1093/brain/awaa286

    Article  PubMed  PubMed Central  Google Scholar 

  194. Palmqvist S, Janelidze S, Quiroz YT et al (2020) Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324(8):772–781. https://doi.org/10.1001/jama.2020.12134

    Article  CAS  PubMed  Google Scholar 

  195. Janelidze S, Berron D, Smith R et al (2020) Associations of plasma phospho-Tau217 levels with tau positron emission tomography in early Alzheimer disease. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.4201

  196. Hampel H, O’Bryant SE, Molinuevo JL et al (2018) Blood-based biomarkers for Alzheimer disease: map** the road to the clinic. Nat Rev Neurol 14(11):639–652. https://doi.org/10.1038/s41582-018-0079-7

    Article  PubMed  PubMed Central  Google Scholar 

  197. Gauthier S, Therriault J, Pascoal T et al (2020) Impact of p-tau181 and p-tau217 levels on enrolment for randomized clinical trials and future use of anti-amyloid and anti-tau drugs. Expert Rev Neurother 20(12):1211–1213. https://doi.org/10.1080/14737175.2020.1841637

    Article  CAS  PubMed  Google Scholar 

  198. Horie K, Barthélemy NR, Sato C et al (2020) CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain awaa373. https://doi.org/10.1093/brain/awaa373

  199. Ashton NJ, Hye A, Rajkumar AP et al (2020) An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol 16(5):265–284. https://doi.org/10.1038/s41582-020-0348-0

    Article  PubMed  Google Scholar 

  200. Ashton NJ, Leuzy A, Lim YM et al (2019) Increased plasma neurofilament light chain concentration correlates with severity of post-mortem neurofibrillary tangle pathology and neurodegeneration. Acta Neuropathol Comm 7(1):5. https://doi.org/10.1186/s40478-018-0649-3

    Article  Google Scholar 

  201. Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14(7):399–415. https://doi.org/10.1038/s41582-018-0013-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Panza F, Lozupone M, Seripa D et al (2020) Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol 16(4):213–228. https://doi.org/10.1038/s41582-020-0330-x

    Article  CAS  PubMed  Google Scholar 

  203. Li C, Gotz J (2017) Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 16(12):863–883. https://doi.org/10.1038/nrd.2017.155

    Article  CAS  PubMed  Google Scholar 

  204. Jadhav S, Avila J, Scholl M et al (2019) A walk through tau therapeutic strategies. Acta Neuropathol Comm 7(1):22. https://doi.org/10.1186/s40478-019-0664-z

    Article  Google Scholar 

  205. Gauthier S, Feldman HH, Schneider LS et al (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388(10062):2873–2884. https://doi.org/10.1016/S0140-6736(16)31275-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Novak P, Schmidt R, Kontsekova E et al (2016) Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 16(2):123–134. https://doi.org/10.1016/S1474-4422(16)30331-3

    Article  CAS  PubMed  Google Scholar 

  207. Novak P, Schmidt R, Kontsekova E et al (2018) FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther 10(1):108. https://doi.org/10.1186/s13195-018-0436-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Colin M, Dujardin S, Schraen-Maschke S et al (2020) From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol 139(1):3–25. https://doi.org/10.1007/s00401-019-02087-9

    Article  CAS  PubMed  Google Scholar 

  209. Mullard A (2020) Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat Rev Drug Discov doi. https://doi.org/10.1038/d41573-020-00217-7

  210. Pardridge WM (2020) Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci 11:373

    Article  PubMed  PubMed Central  Google Scholar 

  211. Kariolis MS, Wells RC, Getz JA et al (2020) Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med 12(545):eaay1359. https://doi.org/10.1126/scitranslmed.aay1359

    Article  CAS  PubMed  Google Scholar 

  212. Ising C, Gallardo G, Leyns CEG et al (2017) AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J Exp Med 214(5):1227–1238. https://doi.org/10.1084/jem.20162125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Liu W, Zhao L, Blackman B et al (2016) Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces tau pathology in mutant tau transgenic mice. J Neurosci 36(49):12425–12435. https://doi.org/10.1523/JNEUROSCI.2016-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Quint WH, Matečko-Burmann I, Schilcher I et al (2020) Bispecific tau antibodies with additional binding to C1q or alpha-synuclein. BioRxiv 2020.11.10.376301. https://doi.org/10.1101/2020.11.10.376301

  215. DeVos SL, Miller RL, Schoch KM et al (2017) Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med 9(374):eaag0481. https://doi.org/10.1126/scitranslmed.aag0481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lee HJ, Boado RJ, Braasch DA et al (2002) Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington’s disease with an antisense radiopharmaceutical and drug-targeting technology. J Nucl Med 43(7):948–956

    CAS  PubMed  Google Scholar 

  217. Pardridge WM (2016) Re-engineering therapeutic antibodies for Alzheimer’s disease as blood-brain barrier penetrating bi-specific antibodies. Exp Opin Biol Ther 16(12):1455–1468. https://doi.org/10.1080/14712598.2016.1230195

    Article  CAS  Google Scholar 

  218. ACI-3024. Alzforum (nd) https://www.alzforum.org/therapeutics/aci-3024. Accessed 14 Dec 2020

  219. LY3372689. Alzforum (nd) https://www.alzforum.org/therapeutics/ly3372689. Accessed 14 Dec 2020

  220. Konstantinidou M, Li J, Zhang B et al (2019) PROTACs- a game-changing technology. Exp Opin Drug Disc 14(12):1255–1268. https://doi.org/10.1080/17460441.2019.1659242

    Article  CAS  Google Scholar 

  221. Vargova G, Vogels T, Kostecka Z et al (2018) Inhibitory interneurons in Alzheimer’s disease. Bratisl Med J 119(4):205–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Hromádka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vogels, T., Hromádka, T. (2022). Tau Pathology in Neurodegenerative Diseases . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation