Genetic Transformation of Craterostigma plantagineum

  • Chapter
Transgenic Crops III

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 48))

  • 329 Accesses

Abstract

Dehydration is one of the most common environmental stresses to which plants are exposed, and in many regions it is the bottleneck of agricultural development (McKersie and Leshem 1994). Plant growth is seriously affected under water-limiting conditions: while numerous organisms such as yeast cells, bacterial and fungal spores, nematodes, angiospermous seeds, and pollen are able to survive extreme dehydration, tolerance to drought is rare in vegetative parts of plants (Leopold et al. 1992). The ability of plants to survive periods of severe water stress uninjured is a necessary component of productivity in areas with limited water supply. Despite the agronomic impact of plant water stress, very few plants have been subjected to biochemical and molecular studies to analyze the cellular events that are involved in tolerance to extreme lack of water (for a review see Ingram and Bartels 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid modulated genes which are induced during desiccation of the resurrection plat Craterostigma plantagineum. Planta 181: 27–34

    Article  CAS  Google Scholar 

  • Bartels D, Velasco R, Schneider K, Forlani F, Furini A, Salamini F (1994) Resurrection plants as model systems to study desiccation tolerance in higher plants. In: Mabry TJ, Nguyen HT, Dixon RA, Bonness MS (eds) Biotechnology for aridland plants. IC2 Institute, Austin, Texas, pp 47–58

    Google Scholar 

  • Bray EA (1991) Regulation of gene expression by endogenous ABA during drought stress. In: Davies WJ, Jones HG (eds). Abscisic acid: physiology and biochemistry. Bios Scientific Publishers, Oxford, pp 81–98

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13–15

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1: 71–82

    Article  CAS  Google Scholar 

  • Furini A (1995) T-DNA tagging and analysis of desiccation-and ABA-induced genes of the resurrection plant Craterostigma plantagineum (Hochst.) by Agrobacterium-mediated transformation. PhD Thesis, University of Cologne, Germany

    Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1994) Agrobacterium-mediated transformation of the desiccation tolerant plant Craterostigma plantagineum. Plant Cell Rep 14: 102–106

    Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16: 3599–3608

    Article  PubMed  CAS  Google Scholar 

  • Gaff DF (1971) Desiccation-tolerant flowering plants in southern Africa. Science 174: 1033–1034

    Article  PubMed  CAS  Google Scholar 

  • Galau GA, Hughes DW, Dure LIII (1986) Abscisic acid induction of cloned cotton late embryo-genesis abundant ( Lea) mRNA. Plant Mol Biol 7: 155–170

    Google Scholar 

  • Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris P-C, Bouvier-Durand M, Vartanian N (1994) Current advances in abscisic acid action and signalling. Plant Mol Biol 26: 15571577

    Google Scholar 

  • Gosti F, Bertauche N, Vartanian N, Giraudat J (1995) Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet 246: 10–18

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377–403

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204: 383–396

    Article  CAS  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman ZS, Koerber H, Redei GP, Schell J (1989) High frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86: 8467–8471

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Mayerhofer R, Koncz-Kalman ZS, Nawrath C, Reiss B, Redei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9: 1337–1346

    PubMed  CAS  Google Scholar 

  • Koncz C, Martini N, Szabados L, Hrouda M, Bachmair A, Schell J (1994) Specialized vectors for gene tagging and expression studies. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–22

    Google Scholar 

  • Leopold AC, Bruni F, Williams RJ (1992) Water in dry organisms. In: Somero GN, Osmond CB

    Google Scholar 

  • Bolis CL (eds) Water and life. Springer, Berlin Heidelberg New York, pp 161–169

    Google Scholar 

  • Maniatis T, Fritsch ET, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • McKersie BD, Leshem YY (1994) Desiccation. In: McKersie BD, Leshem YY (eds) Stress and stress co** in cultivated plants. Kluwer, Dordrecht, pp 132–144

    Chapter  Google Scholar 

  • Michel D, Salamini F, Bartels D, Dale P, Baga M, Szalay A (1993) Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. Plant J 4: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Michel D, Furini A, Salamini F, Bartels D (1994) Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 24: 549–560

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Piatkowski D, Schneider K, Salamini F, Bartels D (1990) Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol 94: 1682–1688

    Article  PubMed  CAS  Google Scholar 

  • Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 502–512

    Google Scholar 

  • Van Larebeke N, Genetello C, Hernalsteens JP, Depicker A, Zaenen I, Messens E, Van Montagu M, Schell J (1977) Transfer of Ti plasmids between Agrobacterium strains by mobilization with the conjugative plasmid PR4. Mol Gen Genet 152: 119–124

    Article  Google Scholar 

  • Walden R, Hayashi H, Schell J (1991) T-DNA as a gene tag. Plant J 1: 281–288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Furini, A., Salamini, F., Bartels, D. (2001). Genetic Transformation of Craterostigma plantagineum . In: Bajaj, Y.P.S. (eds) Transgenic Crops III. Biotechnology in Agriculture and Forestry, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10603-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10603-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08643-4

  • Online ISBN: 978-3-662-10603-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation