Log in

Genetic approaches in research on the role of trehalose in plants

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Data concerning the synthesis and functions of trehalose in plants have been analyzed and the contribution of trehalose to tolerance to different types of abiotic stress has been considered. Data on phenotypic changes and stress resistance (including drought resistance) in transgenic plants that expressed genes required for trehalose biosynthesis have been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saavedra, R., Segura, E., Tenorio, E.P., and Lopez-Marin, L.M., Mycobacterial trehalose-containing glycolipid with immunomodulatory activity on human CD4(+) and CD8(+) T-cells, Microbes Infect., 2006, vol. 8, no. 2, pp. 533–540.

    Article  CAS  PubMed  Google Scholar 

  2. Paul, M.J., Primavesi, L.F., Jhurreea, D., and Zhang, Y., Trehalose metabolism and signaling, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 417–441.

    Article  CAS  PubMed  Google Scholar 

  3. Schiraldi, C., Di Lernia, I., and De Rosa, M., Trehalose production: exploiting novel approaches, Trends Biotechnol., 2002, vol. 20, no. 10, pp. 420–425.

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N.R., Doi, H., Kurosawa, M., Nekooki, M., and Nukina, N., Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntingdon disease, Nat. Med., 2004, vol. 10, no. 2, pp. 148–154.

    Article  CAS  PubMed  Google Scholar 

  5. Higashiyama, T., Novel functions and applications of trehalose, Pure Appl. Chem., 2002, vol. 74, no. 7, pp. 1263–1269.

    Article  CAS  Google Scholar 

  6. Arguelles, J.C., Physiological roles of trehalose in bacteria and yeasts: a comparative analysis, Arch. Microbiol., 2000, vol. 174, no. 4, pp. 217–224.

    Article  CAS  PubMed  Google Scholar 

  7. Ratnakumar, S., and Tunnacliffe, A., Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast, FEMS Yeast Res., 2006, vol. 6, no. 6, pp. 902–913.

    Article  CAS  PubMed  Google Scholar 

  8. Kormish, J.D., and McGhee, J.D., The C. elegans lethal gut-obstructed gob-1 gene is trehalose-6-phosphate phosphatase, Dev. Biol., 2005, vol. 287, no. 1, pp. 35–47.

    Article  CAS  PubMed  Google Scholar 

  9. Schluepmann, H., Pellny, T., van Dijken, A., Smeekens, S., and Paul, M., Trehalose 6-phosphate is indispensable for carbohydrate utilisation and growth in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 11, pp. 6849–6854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thevelein, J.M., and Hohmann, S., Trehalose synthase: guard to the gate of glycolysis in yeast?, Trends Biochem. Sci., 1995, vol. 20, no. 1, pp. 3–10.

    Article  CAS  PubMed  Google Scholar 

  11. Bell, W., Sun, W., Hohmann, S., Wera, S., Reinders, A., De Virgilio, C., Wiemken, A., and Thevelein, J.M., Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex, J. Biol. Chem., 1998, vol. 273, no. 50, pp. 33311–33319.

    Article  CAS  PubMed  Google Scholar 

  12. Tsusaki, K., Nishimoto, T., Nakada, T., Kubota, M., Chaen, H., Sugimoto, T., and Kurimoto, M., Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R48, Biochim. Biophys. Acta, 1996, vol. 1290, no. 1, pp. 1–3.

    Article  PubMed  Google Scholar 

  13. Elbein, A.D., Pan, Y.T., Pastuszak, I., and Carroll, D., New insights on trehalose: a multifunctional molecule, Glycobiology, 2003, vol. 13, no. 4, pp. 17–27.

    Article  Google Scholar 

  14. Maruta, K., Hattori, K., Nakada, T., Kubota, M., Sugimoto, T., and Kurumoto, M., Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36, Biochim. Biophys. Acta, 1996, vol. 1289, no. 1, pp. 10–13.

    Article  PubMed  Google Scholar 

  15. Maruta, K., Hattori, K., Nakada, T., Kubota, M., Sugimoto, T., and Kurumoto, M., Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11, Biosci. Biotech. Biochem., 1996, vol. 60, no. 4, pp. 717–720.

    Article  CAS  Google Scholar 

  16. Qu, Q., Lee, S.J., and Boss, W., TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archeon Thermococcus litoralis, J. Biol. Chem., 2004, vol. 279, no. 46, pp. 47890–47897.

    Article  CAS  PubMed  Google Scholar 

  17. Ryu, S.I., Park, C.S., Cha, J., Woo, E.J., and Lee, S.B., A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization, Biochem. Biophys. Res. Commun., 2005, vol. 329, no. 2, pp. 429–436.

    Article  CAS  PubMed  Google Scholar 

  18. Worning, P., Jensen, L.J., Nelson, K.E., Brunak, S., and Ussery, D.W., Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima, Nucleic Acids Res., 2000, vol. 28, no. 3, pp. 706–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Smet, K.A., Weston, A., Brown, I.N., Young, D.B., and Robertson, B.D., Three pathways for trehalose biosynthesis in mycobacteria, Microbiology, 2000, vol. 146, pp. 199–208.

    Article  PubMed  Google Scholar 

  20. Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F., and Bartels, D., The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia, Physiol. Plant, 1993, vol. 87, no. 2, pp. 223–226.

    Article  CAS  Google Scholar 

  21. Goddijn, O.J., Verwoerd, T.C., Voogd, E., Krutwagen, R.W., de Graaf, P.T., van Dun, K., Poels, J., Ponstein, A.S., Damm, B., and Pen, J., Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants, Plant Physiol., 1997, vol. 113, no. 1, pp. 181–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blazquez, M.A., Santos, E., Flores, C.-L., Martinez-Zapater, J.M., Salinas, J., and Gancedo, C., Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose 6-phosphate synthase, Plant J., 1998, vol. 13, no. 5, pp. 685–689.

    Article  CAS  PubMed  Google Scholar 

  23. Vogel, G., Aeschbacher, R.A., Muller, J., Boller, T., and Wiemken, A., Trehalose 6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant, Plant J., 1998, vol. 13, no. 5, pp. 673–683.

    Article  CAS  PubMed  Google Scholar 

  24. Leyman, B., van Dijck, P., and Thevelein, J.M., An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana, Trends Plant Sci., 2001, vol. 6, no. 11, pp. 510–513.

    Article  CAS  PubMed  Google Scholar 

  25. Eastmond, P.J., van Dijken, A.J., Spielman, M., Kerr, A., Tissier, A.F., Dickinson, H.G., Jones, J.D., Smeekens, S.C., and Graham, I.A., Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation, Plant J., 2002, vol. 29, no. 2, pp. 223–235.

    Article  Google Scholar 

  26. Ramon, M., and Rolland, F., Plant development: introducing trehalose metabolism, Trends Plant Sci., 2007, vol. 12, pp. 185–188.

    Article  CAS  PubMed  Google Scholar 

  27. Pellny, T.K., Ghannoum, O., Conroy, J.P., Schluepmann, H., Smeekens, S., Andralojc, J., Krause, K.P., Goddijn, O., and Paul, M.J., Genetic modification of photosynthesis with E. coli genes for trehalose synthesis, Plant Biotechnol. J., 2004, vol. 2, no. 1, pp. 71–82.

    Article  CAS  PubMed  Google Scholar 

  28. Gomez, L.D., Baud, S., Gilday, A., Li, Y., and Graham, I.A., Delayed embryo development in the Arabidopsis trehalose 6-phosphate synthase 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation, Plant J., 2006, vol. 46, no. 1, pp. 69–84.

    Article  CAS  PubMed  Google Scholar 

  29. Satoh-Nagasawa, N., Nagasawa, N., Malcomber, S., Sakai, H., and Jackson, D., A trehalose metabolic enzyme controls inflorescence architecture in maize, Nature, 2006, vol. 441, pp. 227–230.

    Article  CAS  PubMed  Google Scholar 

  30. Kolbe, A., Tiessen, A., Schluepmann, H., Paul, M., Ulrich, S., and Geigenberger, P., Trehalose 6-phosphate regulates starch synthesis via post-translational redox activation of ADP-glucose pyrophosphorylase, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 31, pp. 11118–11123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Almeida, A.M., Villalobos, E., Araujo, S.S., Leyman, B., van Dijck, P., Alfaro-Cardoso, L., Ferereiro, P.S., Torne, J.M., and Santos, D.M., Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses, Euphytica, 2005, vol. 146, no. 1, pp. 165–176.

    Article  CAS  Google Scholar 

  32. Almeida, A.M., Silva, A.B., Araujo, S.S., Cardoso, L.A., Santos, D.M., Torne, J.M., Silva, J.M., Paul, M.J., and Ferereiro, P.S., Responses to water withdrawal of tobacco plants genetically engineered with the AtTPS1 gene: a special reference to photosynthetic parameters, Euphytica, 2007, vol. 154, no. 1–2, pp. 113–126.

    Article  CAS  Google Scholar 

  33. Garg, A.K., Kim, J.-K., Owens, T.G., Ranwala, A.P., Choi, Y.D., Kochian, L.V., and Wu, R.J., Trehalose accumulation in rice plants confers high tolerance to different abiotic stresses, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 25, pp. 15898–15903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karim, S., Aronsson, H., Ericson, H., Pirhonen, M., Leyman, B., Welin, B., Mantyla, E., Palva, E.T., Van Dijck, P., and Holmstrom, K.O., Improved drought tolerance without undesired side effects in transgenic plants producing trehalose, Plant Mol. Biol., 2007, vol. 64, no. 4, pp. 371–386.

    Article  CAS  PubMed  Google Scholar 

  35. Miranda, J.A., Avonce, N., Suarez, R., Thevelein, J.M., Van Dijck, P., and Iturriaga, G., A bifunctional TPSTPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis, Planta, 2007, vol. 226, no. 6, pp. 1411–1421.

    Article  CAS  PubMed  Google Scholar 

  36. Pilon-Smits, E.A.H., Terry, N., Seors, T., Kim, H., Zayed, A., Hwang, S., van Dun, K., Voogd, E., Verwoerd, T.C., Krutwagen, R.W.H.H., and Goddijn, O.J.M., Trehalose-producing transgenic tobacco plants show improved growth and performance under drought stress, J. Plant Physiol., 1998, vol. 152, no. 4–5, pp. 525–532.

    Article  CAS  Google Scholar 

  37. Chen, S., Hajirezaei, M., Peisker, M., Tschiersch, H., Sonnewald, U., and Börnke, F., Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynthesis, alters carbohydrate partitioning and reduces growth, Planta, 2005, vol. 221, no. 4, pp. 479–492.

    Article  CAS  PubMed  Google Scholar 

  38. Iordachescu, M. and Imai, R., Trehalose biosynthesis in response to abiotic stresses, J. Integr. Plant Biol., 2008, vol. 50, no. 10, pp. 1223–1229.

    Article  CAS  PubMed  Google Scholar 

  39. Van Dijken, A.J.H., Schluepmann, H., and Smeekens, S.C.M., Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering, Plant Physiol., 2004, vol. 135, no. 2, pp. 969–977.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chary, S.N., Hicks, G.R., Choi, Y.G., Carter, D., and Raikhel, N.V., Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis, Plant Physiol., 2008, vol. 146, no. 1, pp. 97–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wingler, A., Fritzius, T., Wiemken, A., Boller, T., and Aeschbacher, R.A., Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis, Plant Physiol., 2000, vol. 124, no. 1, pp. 105–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lunn, J.E., Feil, R., Hendriks, J.H., Gibon, Y., Morcuende, R., Osuna, D., Scheible, W.R., Carillo, P., Hajirezaei, M.R., and Stitt, M., Sugar induced increases in trehalose 6-phosphate are correlated with redox activation of ADP glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana, Biochem. J., 2006, vol. 397, no. 1, pp. 139–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller, J., Wiekem, A., and Aeschbacher, R., Trehalose metabolism in sugar sensing and plant development, Plant Sci., 1999, vol. 147, no. 1, pp. 37–47.

    Article  Google Scholar 

  44. Richards, A.B., Krakowka, S., Dexter, L.B., Schmid, H., Wolterbeek, A.P., Waalkens-Berendsen, D.H., Shigoyuki, A., and Kurimoto, M., Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies, Food Chem. Toxicol., 2002, vol. 40, no. 7, pp. 871–898.

    Article  CAS  PubMed  Google Scholar 

  45. Sola-Penna, M., and Meyer-Fernandes, J.R., Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars?, Arch. Biochem. Biophys., 1998, vol. 360, no. 1, pp. 10–14.

    Article  CAS  PubMed  Google Scholar 

  46. Patist, A. and Zoerb, H., Preservation mechanisms of trehalose in food and biosystems, Colloids Surfaces B: Biointerfaces, 2005, vol. 40, pp. 107–113.

    Article  CAS  PubMed  Google Scholar 

  47. Goddijn, O., and Smeekens, S., Sensing trehalose biosynthesis in plants, Plant J., 1998, vol. 14, no. 2, pp. 143–146.

    Article  CAS  PubMed  Google Scholar 

  48. Eastmond, P.J. and Graham, I.A., Trehalose metabolism: a regulatory role for trehalose-6-phosphate?, Curr. Opin. Plant Biol., 2003, vol. 6, no. 3, pp. 231–235.

    Article  CAS  PubMed  Google Scholar 

  49. Gomez, L.D., Baud, S., and Graham, I.A., The role of trehalose-6-phosphate synthase in Arabidopsis embryo development, Biochem. Soc. Trans., 2005, vol. 33, pp. 280–282.

    Article  CAS  PubMed  Google Scholar 

  50. Schluepmann, H., van Dikken, A., Aghdasi, M., Wobbes, B., Paul, M., and Smeekens, S., Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation, Plant Physiol., 2004, vol. 135, pp. 879–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Avonce, N., Leyman, B., Mascorro-Gallardo, J.O., Van Dijck, P., Thevelein, J.M., and Iturriaga, G., The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signalling, Plant Physiol., 2004, vol. 136, no. 3, pp. 3649–3659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Avonce, N., Leyman, B., Thevelein, J., and Iturriaga, G., Trehalose metabolism and glucose sensing in plants, Biochem. Soc. Trans., 2005, vol. 33, pp. 276–279.

    Article  CAS  PubMed  Google Scholar 

  53. Foster, A.J., Jenkinson, J.M., and Talbot, N.J., Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea, EMBO J., 2003, vol. 22, no. 2, pp. 225–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wingler, A., The function of trehalose biosynthesis in plants, Phytochemistry, 2002, vol. 60, no. 5, pp. 437–440.

    Article  CAS  PubMed  Google Scholar 

  55. Fiqueroa, C.M., Feil, R., Ishihara, H., Watanabe, M., Kolling, K., Krause, U., Hohne, M., Encke, B., Plaxton, W.C., Zeeman, S.C., Li, Z., Schulze, W.X., Hoefgen, R., Stitt, M., and Lunn, J.E., Trehalose 6-phosphat coordinates organic and amino acid metabolism with carbon availability, Plant J., 2016, vol. 85, no. 3, pp. 410–423.

    Article  Google Scholar 

  56. Lunn, J. E., Delorge, I., Figueroa, C.M., Van Dijck, P., and Stitt, M., Trehalose metabolism in plants, Plant J., 2014, vol. 79, no. 4, pp. 544–567.

    Article  CAS  PubMed  Google Scholar 

  57. Martins, M.C., Hejazi, M., Fettke, J., Steup, M., Feil, R., Krause, U., Arrivault, S., Vosloh, D., Figueroa, C.M., Ivakov, A., Yadav, U.P., Piques, M., Metzner, D., Stitt, M., and Lunn, J.E., Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose 6-phosphate, Plant Physiol., 2013, vol. 163, no. 3, pp. 1142–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paul, M.J., Jhurreea, D., Zhang, Y., Primavesi, L.F., Delatte, T., Schluepmann, H., and Wingler, A., Upregulation of biosynthetic processes associated with growth by trehalose 6-phosphate, Plant Signal. Behav., 2010, vol. 5, no. 4, pp. 386–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smeekens, S., Ma, J., Hanson, J., and Rolland, F. Sugar signals and molecular networks controlling plant growth, Curr. Opin. Plant Biol., 2010, vol. 13, no. 3, pp. 274–279.

    Article  CAS  PubMed  Google Scholar 

  60. Ponnu, J., Wahl, V., and Schmid, M., Trehalose-6-phosphate: connecting plant metabolism and development, Front. Plant Sci., 2011, vol. 2, pp. 70–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nunes, C., Schluepmann, H., Delatte, T.L., Wingler, A., Silva, A.B., Fevereiro, P.S., Jansen, M., Fiorani, F., Wiese-Klinkenberg, A., and Paul, M., Regulation of growth by the trehalose pathway: relationship to temperature and sucrose, Plant Signal. Behav., 2013, vol. 8, no. 12, p. e26626.

    Article  PubMed  PubMed Central  Google Scholar 

  62. O’Hara, L.E., Paul, M.J., and Wingler, A., How do sugars regulate plant growth and development?, New insight into the role of trehalose-6-phosphate, Mol. Plant, 2013, vol. 6, no. 2, pp. 261–274.

    Article  PubMed  Google Scholar 

  63. Lastdrager, J., Hanson, J., and Smeekens, S., Sugar signals and the control of plant growth and development, J. Exp. Bot., 2014, vol. 65, no. 3, pp. 799–807.

    Article  CAS  PubMed  Google Scholar 

  64. Romero, C., Belles, J.M., Vaya, J.L., Serrano, R., and Culiácez-Macia, F.A., Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance, Planta, 1997, vol. 201, no. 3, pp. 293–297.

    Article  CAS  PubMed  Google Scholar 

  65. Wingler, A., and Paul, M., The role of trehalose metabolism in chloroplast development and leaf senescence, in Plastid Development in Leaves During Growth and Senescence, Advances in Photosynthesis and Respiration, Bisval, B.,, Eds., Springer, 2013, pp. 551–565.

    Chapter  Google Scholar 

  66. Veyres, N., Danon, A., Aono, M., Galliot, S., Karibasappa, Y.B., Diet, A., Grandmottet, F., Tamaoki, M., Lesur, D., Pilard, S., Boitel-Conti, M., Sangwan-Norreel, B.S., and Sangwan, R.S., The Arabiodpsis sweetie mutant is affected in carbohydrate metabolism and defective in the control of growth, development and senescence, Plant J., 2008, vol. 55, no. 4, pp. 665–686.

    Article  CAS  PubMed  Google Scholar 

  67. Fernandez, O., Bethencourt, L., Quero, A., Sangwan, R.S., and Clément, C, Trehalose and plant stress responses: friend or foe?, Trends Plant Sci., 2010, vol. 15, no. 7, pp. 409–417.

    Article  CAS  PubMed  Google Scholar 

  68. Krasnoperova, E.E., Isayenkov, S.V., Yemets, A.I., and Blume, Ya.B., Influence of protein kinase KIN10 gene expression on root phenotype of Arabidopsis thaliana root system under condition of energy stress, Cytol. Genet., 2016, vol. 50, no. 4, pp. 215–220.

    Article  Google Scholar 

  69. Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung, D.Y., and Guy, C.L., Exploring the temperature-stress metabolome of Arabidopsis, Plant Physiol., 2004, vol. 136, no. 4, pp. 4159–4168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanghera, G.S., Wani, S.H., Hussain, W., and Singh, N.B., Engineering cold stress tolerance in crop plants, Curr. Genom., 2011, vol. 12, no. 1, pp. 30–43.

    Article  CAS  Google Scholar 

  71. Usadel, B., Blasing, O.E., Gibon, Y., Retzlaff, K, Hohne, M., Günther, M., and Stitt, M., Global transcript levels respond to small changes of the carbon status during a progressive exhaustion of carbohydrates in Arabidopsis rosettes, Plant Physiol., 2008, vol. 146, no. 4, pp. 1834–1861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pramanik, M.H., and Imai, R., Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice, Plant Mol. Biol., 2005, vol. 58, no. 4, pp. 751–762.

    Article  CAS  PubMed  Google Scholar 

  73. Fernandez, O., Vandesteene, L., Feil, R., Baillieul, F., Lunn, J.E., and Clement, C, Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance, Planta, 2012, vol. 236, no. 2, pp. 355–369.

    Article  CAS  PubMed  Google Scholar 

  74. Dangl, J.L., and Jones, J.D., Plant pathogens and integrated defense responses to infection, Nature, 2001, vol. 411, no. 6839, pp. 826–833.

    Article  CAS  PubMed  Google Scholar 

  75. Couee, I., Sulmon, C, Gouesbet, G., and El-Amrani, A., Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants, J. Exp. Bot., 2006, vol. 57, no. 3, pp. 449–459.

    Article  CAS  PubMed  Google Scholar 

  76. Romero, C, Cruz Cutanda, M., Cortina, N., Primo, J., and Culianez-Macia, F., Plant environmental stress response by trehalose biosynthesis, Curr. Top. Plant Biol., 2002, vol. 3, pp. 73–88.

    CAS  Google Scholar 

  77. Cortina, C., and Culianez-Macia, F.A., Tomato abiotic stress enhanced tolerance by trehalose biosynthesis, Plant Sci., 2005, vol. 169, pp. 75–82.

    Article  CAS  Google Scholar 

  78. Garcia, N.A.T., Iribarne, C., Lopez, M., Herrera-Cervera, J.A., Lluch, C., Physiological implications of trehalase from Phaseolus vulgaris root nodules: partial purification and characterization, Plant Physiol. Biochem., 2005, vol. 43, no. 4, pp. 355–361.

    Article  CAS  PubMed  Google Scholar 

  79. El-Bashiti, T., Hamamci, H., Oktem, H.A., and Yucel, M., Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions, Plant Sci., 2005, vol. 169, no. 1, pp. 47–54.

    Article  CAS  Google Scholar 

  80. Lopez, M., Tejera, N.A., Iribarne, C., Lluch, C., Herrera-Cervera, J.A., Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress, Physiol. Plant., 2008, vol. 134, no. 4, pp. 575–582.

    Article  CAS  PubMed  Google Scholar 

  81. Fougere, F., Le Rudulier, D., and Streeter, J.G., Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.), Plant Physiol., 1991, vol. 96, no. 4, pp. 1228–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goddijn, O.J.M., and van Dun, K., Trehalose metabolism in plants, Trends Plant Sci., 1999, vol. 4, no. 8, pp. 315–319.

    Article  CAS  PubMed  Google Scholar 

  83. Lee, S.B., Kwon, H.B., Kwon, S.J., Park, S.C., Jeong, M.J., Han, S.E., Byun, M.O., and Daniel, H., Accumulation of trehalose within transgenic chloroplasts confers drought tolerance, Mol. Breed., 2003, vol. 11, no. 1, pp. 1–13.

    Article  CAS  Google Scholar 

  84. Stiller, I., Dulai, S., Kondrak, M., Tarnai, R., Szabo, L., Toldi, O., and Banfalvi, Z., Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae, Planta, 2008, vol. 227, no. 2, pp. 299–308.

    Article  CAS  PubMed  Google Scholar 

  85. Li, H.-W., Zang, B.-S., Deng, X.-W., and Wang, X.-P., Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice, Planta, 2011, vol. 234, no. 5, pp. 1007–1018.

    Article  CAS  PubMed  Google Scholar 

  86. Dai, X., Wang, Y., Yang, B., and Zhou, J., Expression of otsA gene in tobacco and improvement stress tolerance, Wei Sheng Wu Xue Bao, 2001, vol. 41, no. 4, pp. 427–431.

    CAS  PubMed  Google Scholar 

  87. Jang, I.C., Oh, S.J., Seo, J.S., Choi, W.B., Song, S.I., Kim, C.H., Kim, Y.S., Seo, H.S., Choi, Y.D., Nahm, B.H., and Kim, J.K., Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth, Plant Physiol., 2003, vol. 131, no. 2, pp. 516–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holmström, K.O., Mäntylä, E., Wellin, B., Mandal, A., Palva, E.T., Tunnela, O.E., and Londesborough, J., Drought tolerance in tobacco, Nature, 1996, vol. 379, pp. 683–684.

    Article  Google Scholar 

  89. Yeo, E.T., Kwon, H.B., Han, S.E., Lee J.T., Ryu, J.C., and Byu, M.O., Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Sacharomyces cerevisae, Mol. Cells, 2000, vol. 10, no. 3, pp. 263–268.

    CAS  PubMed  Google Scholar 

  90. Han, S.E., Park, S.R., Kwon, H.B., Yi, B.Y., Lee, G.B., and Byun, M.O., Genetic engineering of drought resistant tobacco plants by introducing the trehalose phosphorylase (TP) gene from Pleurotus sajorcaju, Plant Cell, Tissue Organ. Cult., 2005, vol. 82, no. 2, pp. 151–158.

    Article  CAS  Google Scholar 

  91. Sah, S.K, Kaur, G., and Wani, S.H., Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants, in Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies, Springer India, 2016, pp. 83–96.

    Chapter  Google Scholar 

  92. Leyman, B., Avonce, N., Ramon, M., Van Dijck, P., Iturriaga, G., and Thevelein, J.M., Trehalose-6-phophate synthase as an intrinsic selection marker for plant transformation, J. Biotechnol., 2006, vol. 121, no 3, pp. 309–317.

    Article  CAS  PubMed  Google Scholar 

  93. Luzhetskyi, T., Semkiv, M., Dmytruk, K., and Sibirny, A., Improving thermotolerance of Saccharomyces cerevisiae industrial yeast strain via derepression of genes of trehalose synthesis, in Living Organisms and Bioanalytical Approaches for Detoxification and Monitoring of Toxic Compounds: Monograph, University of Rzeszow, 2015, pp. 259–268.

    Google Scholar 

  94. Yatsyshyn, V., Luzhetskyi, T., Dmytruk, K., Yemets, A., and Sibirny, A., Development of a strategy for production the drought resistant cereals by usage of the trehalose biosynthesis genes from Saccharomyces cerevisiae, in Int. Conf. “Advances in Cell Biology and Biotechnology,” 11–13 Oct. 2015, Lviv, Ukraine, p. 72. http://cellbiol.lviv.ua/downloads/USCB-2015-ABook.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Yemets.

Additional information

Original Russian Text © V.Yu. Yatsyshyn, A.Yu. Kvasko, A.I. Yemets, 2017, published in Tsitologiya i Genetika, 2017, Vol. 51, No. 5, pp. 62–78.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatsyshyn, V.Y., Kvasko, A.Y. & Yemets, A.I. Genetic approaches in research on the role of trehalose in plants. Cytol. Genet. 51, 371–383 (2017). https://doi.org/10.3103/S0095452717050127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452717050127

Keywords

Navigation