Abstract

Tolerance of desiccation is relatively rare in plants but is obvious in seeds and pollen. Desiccation is considered by some to be a necessary prerequisite for the completion of the life cycle in species producing seeds that are “orthodox” with regard to their ability to withstand storage at low moisture. Other species do not exhibit maturation drying of their seeds, and are instead “recalcitrant”. This latter group includes many tropical trees, aquatic grasses and a few temperate species, such as oak and sycamore (Farrant et al. 1993). Another example of desiccation tolerance is pollen that in many species can be stored dry for years (Hoekstra 1986). Mosses also have cycles of hydration and dehydration (Bewley 1979). A final and more rare example are the so-called “resurrection” plants which as whole plants withstand the loss of cellular water and return to active metabolism and growth on rehydration (Bartels et al. 1990). In crop plants, however, desiccation tolerance is important principally in pollination, seed development and germination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anandarajah, K. and McKersie, B.D. 1990. Manipulating the desiccation tolerance and vigor with dry somatic embryos of Medicago sativa L. with sucrose, heat shock and abscisic acid. Plant Cell Rep. 9: 451–5.

    Article  CAS  Google Scholar 

  • Anandarajah, K., Kott, L., Beversdorf, W.D. and McKersie, B.D. 1991. Induction of desiccation tolerance in microspore-derived embryos of Brassica napus L. by thermal stress. Plant Sci. 77: 119–23.

    Article  Google Scholar 

  • Attree, S.M., Moore, D., Sawhney, V.K. and Fowke, L.C. 1991. Enhanced maturation and desiccation tolerance of white spruce [Picea-Glauca (Moench) Voss] somatic embryos — Effects of a non-plasmolysing water stress and abscisic acid. Ann. Bot. 68: 519–25.

    Google Scholar 

  • Baker, J., Steele, C., and Dure, L. III 1988. Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol. Biol. 11: 277–91.

    Article  CAS  Google Scholar 

  • Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D. and Salamini, F. 1990. Molecular cloning of abscisic acid modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27–34.

    CAS  Google Scholar 

  • Berjak, P., Farrant, J.M. and Pammenter, N.W. 1990. The basis of recalcitrant seed behaviour. Cell biology of the homoiohydrous seed condition. pp. 89–108. In: Ed. R.B. Taylorson. Recent Advances in the Development and Germination of Seeds. Plenum Press, New York.

    Google Scholar 

  • Bewley, J.D. 1979. Physiological aspects of desiccation tolerance. Ann. Rev. of Plant Physiol. 30: 195–238.

    Article  CAS  Google Scholar 

  • Black, M. 1991. Involvement of ABA in the physiology of develo** and mature seeds. pp. 99–124. In: Eds. W.J. Davies, H.J. Jones. Abscisic Acid Physiology and Biochemistry. Bios Scientific Publishers, Oxford.

    Google Scholar 

  • Bostock, R.M. and Quatrano, R.S. 1992. Regulation of Em gene expression in rice. Interaction between osmotic stress and abscisic acid. Plant Physiol. 98: 1356–63.

    Article  PubMed  CAS  Google Scholar 

  • Bruni, F. and Leopold, A.C. 1991. Glass transition in soybean seed. Relevance to anhydrous biology. Plant Physiol. 96: 660–3.

    Article  PubMed  CAS  Google Scholar 

  • Buchvarov, P. and Gantcheff, T.S. 1984. Influence of accelerated and natural aging on free radical levels in soybean seeds. Physiol. Plant 60: 53–6.

    Article  CAS  Google Scholar 

  • Burke, M.J. 1986. The glassy state and survival of anhydrous biological systems. pp. 358–63. In: Ed. A.C. Leopold. Membrane, Metabolism and Dry Organisms. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Caffrey, M., Fonseca, V. and Leopold, A.C. 1988. Lipid-sugar interactions. Relevance to anhydrous biology. Plant Physiol. 86: 754–8.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, J.F., Crowe, L.M. and Crowe, J.H. 1987. Stabilization of phosphofructokinase with sugars during freeze-drying: characterization of enhanced protection in the presence of divalent cations. Biochim. Biophys. Acta 923: 109–15.

    Article  PubMed  CAS  Google Scholar 

  • Crèvecoeur, M., Deltour, R. and Bronchart, R. 1976. Cytological study on water stress during germination of Zea mays. Planta 132: 31–41.

    Article  Google Scholar 

  • Crowe, J.H., Crowe, L.M. and Chapman, D. 1984. Preservation of membranes in anhydriobiotic organisms: the role of trehalose. Science 223: 701–3.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, J.H. and Crowe, L.M. 1986. Stabilization of membranes in anhydrobiotic organisms. pp. 188–209. In: Ed. A.C. Leopold. Membranes, Metabolism and Dry Organisms. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Crowe, J.H., Crowe, L.M., Carpenter, J.F. and Aurell Wistrom, C. 1987. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242: 1–10.

    PubMed  CAS  Google Scholar 

  • Crowe, J.H., Crowe, L.M., Carpenter, J.F., Rudolph, A.S., Aurell Wistrom, C., Spargo, B.J. and Anchordoguy, T.J. 1988. Interactions of sugars with membranes. Biochim. Biophys. Acta 947: 367–84.

    Article  PubMed  CAS  Google Scholar 

  • Darbyshire, B. 1974. The function of the carbohydrate units of three fungal enzymes in their resistance to dehydration. Plant Physiol. 54: 717–21.

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta, J., Bewley, J.D. and Yeung, E.C. 1982. Desiccation-tolerant and desiccation-intolerant stages during the development and germination of Phaseolus vulgaris seeds. J. Exptl. Bot. 33: 1045–57.

    Article  Google Scholar 

  • Farrant, J.M., Pammenter, N.W. and Berjak, P. 1993. Seed development in relation to desiccation tolerance: a comparison between desiccation sensitive (recalcitrant) seeds of Avicennia marina and desiccation-tolerant types. Seed Sci. Res. 3: 1–13.

    Google Scholar 

  • Gaber, B.P., Chandrasekhar, I. and Pattabiraman, N. 1986. The interaction of trehalose with the phospholipid bilayer: a molecular study. pp. 231–41. In: Ed. A.C. Leopold. Membranes, Metabolism and Dry Organisms. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Galau, G.A., Jakobsen, K.S. and Hughes, D.W. 1991. The controls of late dicot embryogenesis and early germination. Physiol. Plant 81: 280–8.

    Article  CAS  Google Scholar 

  • Gray, D.J. 1987. Quiescence in monocotyledonous and dicotyledonous somatic embryos induced by dehydration. HortSci. 22: 810–4.

    Google Scholar 

  • Gray, D.J. and Purohit, A. 1991. Somatic embryogenesis and development of synthetic seed technology. Crit. Rev. Plant Sci. 10: 33–61.

    Article  Google Scholar 

  • Hendry, G.A.W. 1993. Oxygen, free radical processes and seed longevity. Seed Sci. Res. 3: 141–53.

    Article  CAS  Google Scholar 

  • Hoekstra, F.A. 1986. Water Content in Relation to Stress in Pollen. pp. 102–22. In: Ed. A.C. Leopold. Membranes, Metabolism and Dry Organisms. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Hoekstra, F.A., Crowe, J.H. and Crowe, L.M. 1991. Effect of sucrose on phase behaviour of membranes in intact pollen of Typha latifolia L. as measured with Fourier transform infrared spectroscopy. Plant Physiol. 97: 1073–9.

    Article  PubMed  CAS  Google Scholar 

  • Karssen, C.M., Brinkhorst-vanderSwan, D.L.C., Breekland, A.E. and Koorneef, M. 1983. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157: 158–65.

    Article  CAS  Google Scholar 

  • Koster, K.L. 1991. Glass formation and desiccation tolerance in seeds. Plant Physiol. 96: 302–4.

    Article  PubMed  CAS  Google Scholar 

  • Koster, K.L. and Leopold, A.C. 1988. Sugars and desiccation tolerance in seeds. Plant Physiol. 88: 829–32.

    Article  PubMed  CAS  Google Scholar 

  • Lai, F.M. and McKersie, B.D. 1993. Effect of nutrition on maturation of alfalfa (Medicago sativa L.) somatic embryos. Plant Sci. 91: 87–95.

    Article  CAS  Google Scholar 

  • Lane, B.G. 1991. Cellular desiccation and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos. FASEB J. 5: 2893–901.

    PubMed  CAS  Google Scholar 

  • Leopold, A.C. 1990. Co** with desiccation. pp. 57–86. In: Eds. R.G. Alscher and J.R. Cumming. Stress Responses in Plants: Adaptation and Acclimation Mechanisms. Wiley-Liss, Inc., New York.

    Google Scholar 

  • Leopold, A.C. and Vertucci, C.W. 1989. Moisture as a regulator of physiological reaction in seeds. pp 51–67. In: Eds. P.C. Stanwood and M.B. McDonald. Seed Moisture. CSSA Special Publication No 14. Crop Science Society of America, Madison.

    Google Scholar 

  • Leprince, O., Van der Werf, A., Deltour, R. and Lambers, H. 1992. Respiratory pathways in germinating maize radicles correlated with desiccation tolerance and soluble sugars. Physiol. Plant 84: 581–8.

    Article  Google Scholar 

  • Leprince, O., Hendry, G.A.F. and McKersie, B.D. 1993. The mechanisms of desiccation tolerance in develo** seeds. Seed Sci. Res. 3: 231–46.

    Article  Google Scholar 

  • Leshem, Y. 1992. Plant Membranes: A Biophysical Approach to Structure, Development and Senescence. p. 266. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Madin, K.A.C. and Crowe, J.H. 1975. Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J. Exptl. Zool. 193: 335–42.

    Article  CAS  Google Scholar 

  • Marsolais, A.A., Wilson, D.P.M., Tsuijita, M.J. and Senaratna, T. 1991. Somatic embryogenesis and artificial seed production in zonal (Pelargonium x hortorum) and regal Pelargonium x domesticum) geranium. Can. J. Bot. 69: 1188–93.

    Article  Google Scholar 

  • McKersie, B.D. and Stinson, R.H. 1980. Effect of dehydration on leakage and membrane structure in Lotus corniculatus L. seeds. Plant Physiol. 66: 316–20.

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B.D. and Bowley, S.R. 1993. Synthetic seeds in alfalfa. pp. 231–55. In: Ed. K. Redenbaugh. Synseeds. Applications of Synthetic Seeds to Crop Improvement. CRC Press, Boca Raton.

    Google Scholar 

  • Mundy, J. and Chua, N.-H. 1988. Abscissic acid and water-stress induce a novel rice gene. EMBO J. 7: 2279–86.

    PubMed  CAS  Google Scholar 

  • Pammenter, N.W., Vertucci, C.W. and Berjak, P. 1991. Homeohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkii. Plant Physiol. 96: 1093–8.

    Article  PubMed  CAS  Google Scholar 

  • Priestley, D.A., Werner, B.G., Leopold, A.C. and McBride, M.B. 1985. Organic free radical levels in seeds and pollen: the effects of hydration and aging. Physiol. Plant 64: 88–94.

    Article  CAS  Google Scholar 

  • Redenbaugh, K. 1993. Synseeds. Applications of Synthetic Seeds to Crop Improvement. 481 p. CRC Press, Boca Raton.

    Google Scholar 

  • Senaratna, T. and McKersie, B.D. 1983. Dehydration injury in germinating soybean (Glycine max L.) seeds. Plant Physiol. 72: 620–4.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna, T., McKersie, B.D. and Stinson, R.H. 1984. Association between membrane phase properties and dehydration injury in soybean axes. Plant Physiol. 76: 759–62.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna, T., McKersie, B.D. and Stinson, R.H. 1985a. Simulation of dehydration injury to membranes from soybean axes by free radicals. Plant Physiol. 77: 472–4.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna, T., McKersie, B.D. and Stinson, R.H. 1985b. Antioxidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance. Plant Physiol. 78: 168–71.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna, T., McKersie, B.D. and Borochov, A. 1987. Desiccation and free radical mediated changes in plant membranes. J. Exptl. Bot. 38: 2005–14.

    Article  CAS  Google Scholar 

  • Senaratna, T., McKersie, B.D. and Bowley, S.R. 1989. Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos. Influence of abscisic acid, stress pretreatments and drying rates. Plant Sci. 65: 253–9.

    Article  CAS  Google Scholar 

  • Senaratna, T., McKersie, B.D. and Bowley, S.R. 1990. Artificial seeds of alfalfa. Induction of desiccation tolerance in somatic embryos. In Vitro Cell. Del). Biol. 26: 85–90.

    Article  Google Scholar 

  • Senaratna, T., Kott, L., Beversdorf, W.D. and McKersie, B.D. 1991. Desiccation of microspore derived embryos of oilseed rape (Brassica napus L.). Plant Cell Rep. 10: 342–4.

    Article  Google Scholar 

  • Simontacchi, M. and Puntarulo, S. 1992. Oxygen radical generation by isolated microsomes from soybean seedlings. Plant Physiol. 100: 1263–8.

    Article  PubMed  CAS  Google Scholar 

  • Simon, E.W. 1974. Phospholipids and plant membrane permeability. New Phytol. 73: 377–420.

    Article  CAS  Google Scholar 

  • Vertucci, C.W. 1989. The effects of low water contents on physiological activities of seeds. Physiol. Plant 77: 172–6.

    Article  CAS  Google Scholar 

  • Vertucci, C.W. 1990. Calorimetric studies of the state of water in seed tissues. Biophys. J. 58: 1463–71.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.J. and Leopold, A.C. 1989. The glassy state in corn embryos. Plant Physiol. 89: 977–81.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, J.D. and Quatrano, R.S. 1988. ABA-regulation of two classes of embryo-specific sequences in mature wheat embryos. Plant Physiol. 86: 208–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mckersie, B.D., Leshem, Y.Y. (1994). Desiccation. In: Stress and Stress Co** in Cultivated Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3093-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3093-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4400-6

  • Online ISBN: 978-94-017-3093-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation