Log in

Natural Frequencies, Critical Velocity and Equilibriums of Fixed–Fixed Timoshenko Pipes Conveying Fluid

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

In this paper, the free vibration characteristics of fixed–fixed Timoshenko pipe conveying fluid, including natural frequency, mode, critical velocity, bifurcation of static equilibrium configuration, are studied analytically and numerically. Based on the Timoshenko beam theory and generalized Hamilton principle, a vibration model of pipes conveying fluid with fixed–fixed boundary conditions is established. The analytical expressions of critical flow velocity and supercritical nontrivial static equilibrium configuration are derived. The natural frequencies are studied by the complex modal method (CMM) and the Galerkin truncation method (GTM). Moreover, the finite element method (FEM) is developed to deal with the influence of fluid velocity on the vibration characteristics of the pipe. The gyroscopic force caused by the fluid flow is equivalent to the dam** matrix. It shows that the natural frequencies of the FEM agree well with the theoretical results of CMM and GTM in general. However, the developed FEM cannot reflect the influence of the fluid flow on the vibration mode of pipes. Furthermore, the free vibration characteristics of the pipe are significantly affected by the internal pressure of the pipe.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author [H. Ding], upon reasonable request.

References

  1. Srinil N, Wiercigroch M, O’Brien P (2009) Reduced-order modelling of vortex-induced vibration of catenary riser. Ocean Eng 36:1404–1414. https://doi.org/10.1016/j.oceaneng.2009.08.010

    Article  Google Scholar 

  2. Zhang XH, Duan ML, Soares CG (2018) Lateral buckling critical force for submarine pipe-in-pipe pipelines. Appl Ocean Res 78:99–109. https://doi.org/10.1016/j.apor.2018.06.007

    Article  Google Scholar 

  3. Yang W, Ai Z, Zhang X, Chang X, Gou R (2018) Nonlinear dynamics of three-dimensional vortex-induced vibration prediction model for a flexible fluid-conveying pipe. Int J Mech Sci 138–139:99–109. https://doi.org/10.1016/j.ijmecsci.2018.02.005

    Article  Google Scholar 

  4. Gao PX, Yu T, Zhang YL, Wang J, Zhai JY (2021) Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review. Chin J Aeronaut 34:83–114. https://doi.org/10.1016/j.cja.2020.07.007

    Article  Google Scholar 

  5. Gao PX, Zhai JY, Qu FZ, Han QK (2017) Vibration and dam** analysis of aerospace pipeline conveying fluid with constrained layer dam** treatment. Proc Inst Mech Eng 232:1529–1541. https://doi.org/10.1177/0954410017692367

    Article  Google Scholar 

  6. Lu HF, Huang K, Wu SJ (2015) Vibration and stress analyses of positive displacement pump pipeline systems in oil transportation stations. J Pipeline Syst Eng Pract 7(1):05015002. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000205

    Article  Google Scholar 

  7. Paı̈doussis R (1966) Unstable oscillation of tubular cantilevers conveying fluid. I. Theory. Proc R Soc Lond 293:512–527. https://doi.org/10.2307/2415578

    Article  MATH  Google Scholar 

  8. Paidoussis R (1966) Unstable oscillation of tubular cantilevers conveying fluid. II. Experiments. Proc R Soc Lond 293:528–542. https://doi.org/10.2307/2415579

    Article  Google Scholar 

  9. Semler C, Li GX, Paı̈doussis MP (1994) The non-linear equations of motion of pipes conveying fluid. J Sound Vib 169(5):577–599. https://doi.org/10.1006/jsvi.1994.1035

    Article  MATH  Google Scholar 

  10. Gorman DG, Reese JM, Zhang YL (2000) Vibration of a flexible pipe conveying viscous pulsating fluid flow. J Sound Vib 230:379–392. https://doi.org/10.1006/jsvi.1999.2607

    Article  Google Scholar 

  11. Lee SI, Chung J (2002) New non-linear modelling for vibration analysis of a straight pipe conveying fluid. J Sound Vib 254:313–325. https://doi.org/10.1006/jsvi.2001.4097

    Article  Google Scholar 

  12. Szabo Z (2003) Nonlinear analysis of a cantilever pipe containing pulsatile flow. Meccanica 38:161–172. https://doi.org/10.1023/A:1022039905834

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang YM, Liu YS, Li BH, Li YJ, Yue ZF (2009) Natural frequency analysis of fluid conveying pipeline with different boundary conditions. Nucl Eng Des 240(3):461–467. https://doi.org/10.1016/j.nucengdes.2009.11.038

    Article  Google Scholar 

  14. Zhang T, Ouyang H, Zhang YO, Lv BL (2016) Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses. Appl Math Model 40:7880–7900. https://doi.org/10.1016/j.apm.2016.03.050

    Article  MathSciNet  MATH  Google Scholar 

  15. Mao XY, Shu S, Fan X, Ding H, Chen LQ (2021) An approximate method for pipes conveying fluid with strong boundaries. J Sound Vib 505:116157. https://doi.org/10.1016/j.jsv.2021.116157

    Article  Google Scholar 

  16. Ni Q, Luo YY, Li MW, Yan H (2017) Natural frequency and stability analysis of a pipe conveying fluid with axially moving supports immersed in fluid. J Sound Vib 403:173–189. https://doi.org/10.1016/j.jsv.2017.05.023

    Article  Google Scholar 

  17. Javadi M, Noorian MA, Irani S (2019) Stability analysis of pipes conveying fluid with fractional viscoelastic model. Meccanica 54:399–410. https://doi.org/10.1007/s11012-019-00950-3

    Article  MathSciNet  Google Scholar 

  18. Javadi M, Noorian MA, Irani S (2019) Primary and secondary resonances in pipes conveying fluid with the fractional viscoelastic model. Meccanica 54:2081–2098. https://doi.org/10.1007/s11012-019-01068-2

    Article  MathSciNet  Google Scholar 

  19. Li YD, Sun ZJ (2021) Analysis of planar motion for curved pipe conveying fluid with different types of initial configuration. J Vib Eng Technol. https://doi.org/10.1007/s42417-021-00403-w

    Article  Google Scholar 

  20. Yang XD, Yang TZ, ** JD (2007) Dynamic stability of a beam-model viscoelastic pipe for conveying pulsative fluid. Acta Mech Solida Sin 20(4):350–356. https://doi.org/10.1007/s10338-007-0741-x

    Article  Google Scholar 

  21. Dagli BY, Ergut A (2019) Dynamics of fluid conveying pipes using Rayleigh theory under non-classical boundary conditions. Eur J Mech B-Fluids 77:125–134. https://doi.org/10.1016/j.euromechflu.2019.05.001

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang C-C (1974) Vibrations of pipes containing flowing fluids according to Timoshenko theory. J Appl Mech 41:814–817. https://doi.org/10.1115/1.3423401

    Article  MATH  Google Scholar 

  23. Laithier BE, Paı̈doussis MP (1981) The equations of motion of initially stressed Timoshenko tubular beams conveying fluid. J Sound Vib 79:175–195. https://doi.org/10.1016/0022-460X(81)90367-9

    Article  MATH  Google Scholar 

  24. Zhang YL, Gorman DG, Reese JM (2001) A modal and dam** analysis of viscoelastic Timoshenko tubes conveying fluid. Int J Numer Meth Eng 50:419–433

    Article  Google Scholar 

  25. Zhai HB, Wu ZY, Liu YS, Yue ZF (2011) Dynamic response of pipeline conveying fluid to random excitation. Nucl Eng Des 241:2744–2749. https://doi.org/10.1016/j.nucengdes.2011.06.024

    Article  Google Scholar 

  26. Gu JJ, Ma TQ, Duan ML (2016) Effect of aspect ratio on the dynamic response of a fluid-conveying pipe using the Timoshenko beam model. Ocean Eng 114:185–191. https://doi.org/10.1016/j.oceaneng.2016.01.021

    Article  Google Scholar 

  27. Tan X, Ding H, Chen LQ (2019) Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model. J Sound Vib 455:241–255. https://doi.org/10.1016/j.jsv.2019.05.019

    Article  Google Scholar 

  28. Luczko J, Czerwinski A (2019) Three-dimensional dynamics of curved pipes conveying fluid. J Fluids Struct 91:102704. https://doi.org/10.1016/j.jfluidstructs.2019.102704

    Article  Google Scholar 

  29. Liang F, Yang XD, Zhang W, Qian YJ (2018) Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment. J Sound Vib 417:65–79. https://doi.org/10.1016/j.jsv.2017.12.005

    Article  Google Scholar 

  30. Liang F, Yang XD, Zhang W, Qian YJ (2018) Coupled bi-flexural–torsional vibration of fluid-conveying pipes spinning about an eccentric axis. Int J Struct Stab Dyn 19:1950003. https://doi.org/10.1142/S0219455419500032

    Article  MathSciNet  Google Scholar 

  31. Ye SQ, Ding H, Wei S, Ji JC, Chen LQ (2021) Non-trivial equilibriums and natural frequencies of a slightly curved pipe conveying supercritical fluid. Ocean Eng 227:108899. https://doi.org/10.1016/j.oceaneng.2021.108899

    Article  Google Scholar 

  32. Zhou K, Ni Q, Chen W, Dai HL, Hagedorn P, Wang L (2020) Static equilibrium configuration and nonlinear dynamics of slightly curved cantilevered pipe conveying fluid. J Sound Vib 490:115711. https://doi.org/10.1016/j.jsv.2020.115711

    Article  Google Scholar 

  33. Liang F, Yang XD, Qian YJ, Zhang W (2017) Forced response analysis of pipes conveying fluid by nonlinear normal modes method and iterative approach. J Comput Nonlinear Dyn 13(1):014502. https://doi.org/10.1115/1.4037594

    Article  Google Scholar 

  34. Mao XY, Ding H, Chen LQ (2021) Bending vibration control of pipes conveying fluids by nonlinear torsional absorbers at the boundary. Sci China Technol Sci 64(8):1690–1704. https://doi.org/10.1007/s11431-020-1791-2

    Article  Google Scholar 

  35. Tan X, Mao XY, Ding H, Chen LQ (2018) Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe conveying fluid. J Sound Vib 428:104–118. https://doi.org/10.1016/j.jsv.2018.04.041

    Article  Google Scholar 

  36. Tan X, Ding H, Sun JQ, Chen LQ (2020) Primary and super-harmonic resonances of Timoshenko pipes conveying high-speed fluid. Ocean Eng 203:107258. https://doi.org/10.1016/j.oceaneng.2020.107258

    Article  Google Scholar 

  37. Guo Y, Zhu B, Yang B, Li YH (2022) Flow-induced buckling and post-buckling vibration characteristics of composite pipes in thermal environment. Ocean Eng 243:110267. https://doi.org/10.1016/j.oceaneng.2021.110267

    Article  Google Scholar 

  38. Li Q, Liu W, Lu K, Yue ZF (2021) Flow-induced buckling statics and dynamics of imperfect pipes. Arch Appl Mech 91:4553–4569. https://doi.org/10.1007/s00419-021-02023-y

    Article  Google Scholar 

  39. Li Q, Liu W, Lu K, Yue ZF (2020) Three-dimensional parametric resonance of fluid-conveying pipes in the pre-buckling and post-buckling states. Int J Press Vessels Pip 189:104287. https://doi.org/10.1016/j.ijpvp.2020.104287

    Article  Google Scholar 

  40. Zhang YL, Chen LQ (2012) Internal resonance of pipes conveying fluid in the supercritical regime. Nonlinear Dyn 67:1505–1514. https://doi.org/10.1007/s11071-011-0084-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang KK, Tan X, Ding H, Chen LQ (2018) Parametric vibration responses of supercritical fluid-conveying pipes in 3:1 Internal Resonance. Appl Math Mech 39:1227–1235. https://doi.org/10.21656/1000-0887.390121

    Article  Google Scholar 

  42. Zhen YX, Gong YF, Tang Y (2021) Nonlinear vibration analysis of a supercritical fluid-conveying pipe made of functionally graded material with initial curvature. Compos Struct 268:113980. https://doi.org/10.1016/j.compstruct.2021.113980

    Article  Google Scholar 

  43. Liang F, Yang X-D, Qian Y-J, Zhang W (2017) Free vibration analysis of pipes conveying fluid based on linear and nonlinear complex modes approach. Int J Appl Mech 09(08):1750112. https://doi.org/10.1142/s1758825117501125

    Article  Google Scholar 

  44. Lin YH, Tsai YK (1997) Nonlinear vibrations of Timoshenko pipes conveying fluid. Int J Solids Struct 34:2945–2956. https://doi.org/10.1016/s0020-7683(96)00217-x

    Article  MATH  Google Scholar 

  45. Li JS, Zhang DY, Wang L, Lin D, Hong J (2019) Modal characteristics analysis for pipelines considering influence of fluid medium. J Aerosp Power 34:671–677. https://doi.org/10.13224/j.cnki.jasp.2019.03.019

    Article  Google Scholar 

  46. Gu ZJ, Bai CQ, Zhang HY (2019) Stochastic finite-element modeling and dynamic characteristics analysis of pipe-conveying fluid. J Vib Eng Technol 7:251–259. https://doi.org/10.1007/s42417-019-00118-z

    Article  Google Scholar 

  47. Yuan JR, Fan X, Shu S, Ding H, Chen LQ (2022) Free vibration analysis and numerical simulation of slightly curved pipe conveying fluid based on Timoshenko beam theory. Int J Appl Mech. https://doi.org/10.1142/S1758825122500144

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Science Fund for Distinguished Young Scholars (No. 12025204) and the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018).

Funding

The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, YF., Fan, X., Shu, S. et al. Natural Frequencies, Critical Velocity and Equilibriums of Fixed–Fixed Timoshenko Pipes Conveying Fluid. J. Vib. Eng. Technol. 10, 1623–1635 (2022). https://doi.org/10.1007/s42417-022-00469-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00469-0

Keywords

Navigation