Log in

Stability analysis of pipes conveying fluid with fractional viscoelastic model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Divergence and flutter instabilities of pipes conveying fluid with fractional viscoelastic model has been investigated in the present work. Attention is concentrated on the boundaries of the stability. Based on the Euler–Bernoulli beam theory for structural dynamics, viscoelastic fractional model for dam** and, plug flow model for fluid flow, equation of motion has been derived. The effects of gravity, and distributed follower forces are also considered. By transferring the equation of motion to the Laplace domain and using the Galerkin method, the characteristic equations are obtained. By solving the eigenvalue problem, frequencies and dam**s of the system have been obtained versus flow velocity. Some numerical test cases have been studied with viscoelastic fractional model and the effect of the fractional derivative order and the retardation time is investigated for various boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bourrières F (1939) Sur un phénomène d’oscillation auto-entretenue en mécanique des fluides réels. E. Blondel La Rougery

  2. Dodds HL, Runyan HL (1965) Effect of high-velocity fluid flow on the bending vibrations and static divergence of a simply supported pipe. National Aeronautics and Space Administration 2870

  3. Païdoussis MP, Li GX (1993) Pipes conveying fluid: a model dynamical problem. J Fluids Struct 7(2):137–204

    Article  Google Scholar 

  4. Païdoussis MP (1998) Fluid–structure interactions slender structures and axial flow, vol 1. Academic Press, London

    Google Scholar 

  5. Amabili M, Pellicano F, Païdoussis MP (1999) Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part I: stability. J Sound Vib 225(4):655–700

    Article  ADS  Google Scholar 

  6. Lakis A, Laveau A (1991) Non-linear dynamic analysis of anisotropic cylindrical shells containing a flowing fluid. Int J Solids Struct 28(9):1079–1094

    Article  MATH  Google Scholar 

  7. Firouz-Abadi RD, Noorian MA, Haddadpour H (2010) A fluid–structure interaction model for stability analysis of shells conveying fluid. J Fluids Struct 26(5):747–763

    Article  Google Scholar 

  8. Weaver DS, Unny TE (2010) On the dynamic stability of fluid-conveying pipes. J Appl Mech 40(1):747–763

    Google Scholar 

  9. Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. La Riv del Nuovo Cimento (1971–1977) 1(2):161–198

    Article  ADS  Google Scholar 

  10. Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 91(1):134–147

    Article  ADS  MATH  Google Scholar 

  11. Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order, vol 111. Elsevier, Amsterdam

    MATH  Google Scholar 

  12. Bagley RL, Torvik J (1983) Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J 21(5):741–748

    Article  ADS  MATH  Google Scholar 

  13. Bagley RL, Torvik J (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210

    Article  ADS  MATH  Google Scholar 

  14. Permoon MR, Haddadpour H, Javadi M (2018) Nonlinear vibration of fractional viscoelastic plate: primary, subharmonic, and superharmonic response. Int J Non-linear Mech 99:154–164

    Article  Google Scholar 

  15. Asgari M, Permoon MR, Haddadpour H (2017) Stability analysis of a fractional viscoelastic plate strip in supersonic flow under axial loading. Meccanica 52(7):1495–1502

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang T, Fang B (2013) Asymptotic analysis of an axially viscoelastic string constituted by a fractional differentiation law. Int J Non-Linear Mech 49:170–174

    Article  Google Scholar 

  17. Di Paola M, Heuer R, Pirrotta A (2013) Fractional visco-elastic Euler–Bernoulli beam. Int J Solids Struct 50(22–23):3505–3510

    Article  Google Scholar 

  18. Yang T, Fang B (2012) Stability in parametric resonance of an axially moving beam constituted by fractional order material. Arch Appl Mech 82(12):1763–1770

    Article  MATH  Google Scholar 

  19. Rossikhin Y, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(1):010801

    Article  ADS  Google Scholar 

  20. Rossikhin Y, Shitikova MV (2012) On fallacies in the decision between the caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator. Mech Res Commun 45:22–27

    Article  Google Scholar 

  21. Agrawal OP (2004) Analytical solution for stochastic response of a fractionally damped beam. J Vib Acoust 126(4):561–566

    Article  Google Scholar 

  22. Di Lorenzo S, Di Paola M, Pinnola FP, Pirrotta A (2014) Stochastic response of fractionally damped beams. Probab Eng Mech 35:37–43

    Article  Google Scholar 

  23. Spanos PD, Malara G (2014) Nonlinear random vibrations of beams with fractional derivative elements. J Eng Mech 140(9):04014069

    Article  Google Scholar 

  24. Liaskos KB, Pantelous AA, Kougioumtzoglou IA, Meimaris AT (2018) Implicit analytic solutions for the linear stochastic partial differential beam equation with fractional derivative terms. Syst Control Lett 121:38–49

    Article  MathSciNet  MATH  Google Scholar 

  25. Drozdov AD (1997) Stability of a viscoelastic pipe filled with a moving fluid. ZAMM-J Appl Math Mech/Z Angew Math Mech 77(9):689–700

    Article  MathSciNet  MATH  Google Scholar 

  26. Yin Y, Zhu K (1973) Oscillating flow of a viscoelastic fluid in a pipe with the fractional maxwell model. Appl Math Comput 173(1):48–52

    MathSciNet  Google Scholar 

  27. Wang L (2012) Flutter instability of supported pipes conveying fluid subjected to distributed follower forces. Acta Mech Solida Sin 25(1):46–52

    Article  MathSciNet  Google Scholar 

  28. Deng J, Liu Y, Zhang Z, Liu W (2017) Dynamic behaviors of multi-span viscoelastic functionally graded material pipe conveying fluid. Proc Inst Mech Eng Part C: J Mech Eng Sci 231(17):3181–3192

    Article  Google Scholar 

  29. Deng J, Liu Y, Zhang Z, Liu W (2017) Stability analysis of multi-span viscoelastic functionally graded material pipes conveying fluid using a hybrid method. Eur J Mech-A/Solids 65:257–270

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou XQ, Yu DY, Shao XY, Wang CY, Zhangand S (2017) Dynamics characteristic of steady fluid conveying in the periodical partially viscoelastic composite pipeline. Compos Part B: Eng 111:387–408

    Article  Google Scholar 

  31. Tang Y, Zhen Y, Fang B (2018) Nonlinear vibration analysis of a fractional dynamic model for the viscoelastic pipe conveying fluid. Appl Math Model 56:123–136

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Noorian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadi, M., Noorian, M.A. & Irani, S. Stability analysis of pipes conveying fluid with fractional viscoelastic model. Meccanica 54, 399–410 (2019). https://doi.org/10.1007/s11012-019-00950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-00950-3

Keywords

Navigation