Log in

Photocatalytic degradation of malachite green based on PW12/MWCNTs/Bi2O3 composite photocatalyst

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, Bi2O3 nanoparticles are prepared via an impregnation method and modified using multi-walled carbon nanotubes (MWCNTs) and PW12. XRD reveals that the prepared Bi2O3 corresponded to the monoclinic α-phase. SEM results reveal that the composite consists of a series of nanosheets with flower-like structures. In this study, malachite green (MG) is used as a simulated contaminant to test the degradation capability of the compound under sunlight, and the effect of PW12 do** on the photocatalytic properties of the sample is investigated. The results show that the degradation kinetic constant of 0.3 PW12/MWCNTs/Bi2O3 (0.8125 h−1) is about 3 times that of Bi2O3 (0.2767 h−1). The ternary complex containing 30% PW12 has a degradation rate of 95% in 2.5 h. h+ and \(^\cdot {\text{O}}_2^-\) were the major active species in the photocatalytic degradation of MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Solís-Casados, L. Escobar-Alarcón, M. Fernández, F. Valencia, Malachite green degradation in simulated wastewater using Nix:TiO2 thin films. Fuel 110, 17–22 (2013)

    Article  Google Scholar 

  2. S.J. Culp, P.W. Mellick, R.W. Trotter, K.J. Greenlees, R.L. Kodell, F.A. Beland, Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem. Toxicol. 44, 1204–1212 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. D. Selleswari, P. Meena, D. Mangalaraj, Design of CuO/SnO2 heterojunction photocatalyst with enhanced UV light-driven photocatalytic activity on congo-red and malachite green dyes. J. Iran. Chem. Soc. 16, 1291–1300 (2019)

    Article  CAS  Google Scholar 

  4. Y. Tao, F. Wang, L. Meng, Y. Guo, M. Han, J. Li, C. Sun, S. Wang, Biological decolorization and degradation of malachite green by pseudomonas sp. YB2: process optimization and biodegradation pathway. Curr. Microbiol. 74, 1210–1215 (2017)

    Article  PubMed  CAS  Google Scholar 

  5. H.C. Lee, Y.G. Jeong, B.G. Min, W.S. Lyoo, C.L. Sang, Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams. Fiber. Polym. 10, 636–642 (2009)

    Article  CAS  Google Scholar 

  6. T.H. Kim, C. Park, J. Yang, S. Kim, Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. J. Hazard. Mater. 112, 95–103 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. Z. Yang, H. Yang, Z. Jiang, T. Cai, H. Li, H. Li, A. Li, R. Cheng, Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft- polyacrylamide. J. Hazard. Mater. 254–255, 36–45 (2013)

    Article  PubMed  Google Scholar 

  8. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  ADS  PubMed  CAS  Google Scholar 

  9. R.J. Kamble, P.V. Gaikwad, K.M. Garadkar, S.R. Sabale, V.R. Puri, S.S. Mahajan, Photocatalytic degradation of malachite green using hydrothermally synthesized cobalt-doped TiO2 nanoparticles. J. Iran. Chem. Soc. 19, 303–312 (2022)

    Article  CAS  Google Scholar 

  10. M. Karimi-Nazarabad, E.K. Goharshadi, Decoration of graphene oxide as a cocatalyst on Bi doped g-C3N4 photoanode for efficient solar water splitting. J. Electroanal. Chem. 904, 115933 (2022)

    Article  CAS  Google Scholar 

  11. R. Mehrkhah, K. Goharshadi, E.K. Goharshadi, H.S. Sajjadizadeh, Multifunctional photoabsorber for highly efficient interfacial solar steam generation and wastewater treatment. ChemistrySelect 8, e202204386 (2023)

    Article  CAS  Google Scholar 

  12. M.M. Mohamed, Mousa MA, Khairy M, Amer AA, Nitrogen graphene: A new and exciting generation of visible light driven photocatalyst and energy storage application. ACS Omega 3, 1801–1804 (2018)

    Article  Google Scholar 

  13. R. Mehrkhah, E.K. Goharshadi, E. Lichtfouse, H.S. Ahn, S. Wongwises, W. Yu, O. Mahian, Interfacial solar steam generation by wood-based devices to produce drinking water: a review. Environ. Chem. Lett. 21, 285–318 (2023)

    Article  CAS  Google Scholar 

  14. M. Karimi-Nazarabad, E.K. Goharshadi, H.S. Sajjadizadeh, Copper-Azolate framework coated on g-C3N4 nanosheets as a Core-Shell heterojunction and decorated with a Ni(OH)2 cocatalyst for efficient photoelectrochemical water splitting. J. Phys. Chem. C 126, 8327–8336 (2022)

    Article  CAS  Google Scholar 

  15. H.F. Shi, T.Z. Wang, J. Chen, C. Zhu, J.H. Ye, Z.G. Zou, Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts. Catal. Lett. 141, 525–530 (2011)

    Article  CAS  Google Scholar 

  16. R. Mehrkhah, M.M. Ghafurian, H. Niazmand, E.K. Goharshadi, O. Mahian, The use of nanofluids in solar desalination of saline water resources as antibacterial agents, Adv. Nanofluid Heat Transf. 265–301 (2022)

  17. J.W. Medernach, R.L. Snyder, Powder diffraction patterns and structures of the bismuth oxides. J. Am. Ceram. Soc. 61, 494–497 (1978)

    Article  CAS  Google Scholar 

  18. J.A. Switzer, M.G. Shumsky, E.W. Bohannan, Electrodeposited Ceramic Single Crystals. Science 284, 293–296 (1999)

    Article  ADS  PubMed  CAS  Google Scholar 

  19. A.F. Gualtieri, S. Immovilli, M. Prudenziati, Powder X-ray diffraction data for the new polymorphic compound ω-Bi2O3. Powder Diffr. 12, 90–92 (1997)

    Article  ADS  CAS  Google Scholar 

  20. S. Iyyapushpam, S.T. Nishanthi, D.P. Padiyan, Photocatalytic degradation of methyl orange using α-Bi2O3 prepared without surfactant. J. Alloys Comp. 563, 104–107 (2013)

    Article  CAS  Google Scholar 

  21. M. Faisal, A.A. Ibrahim, H. Bouzid, S.A. Al-Sayari, M.S. Al-Assiri, A.A. Ismail, Hydrothermal synthesis of Sr-doped α-Bi2O3 nanosheets as highly efficient photocatalysts under visible light. J. Mol. Catal. A-Chem. 387, 69–75 (2014)

    Article  CAS  Google Scholar 

  22. S. Park, H. Kim, C. Lee, D.H. Lee, S.S. Hong, Synthesis of very straight bismuth oxide nanowires by using thermal evaporation of bismuth powders. J. Korean Phys. Soc. 53, 1965–1970 (2008)

    Article  ADS  CAS  Google Scholar 

  23. X.F. Chang, J. Huang, C. Cheng, W. Sha, X. Li, G.B. Ji, S. Deng, G. Yu, Photocatalytic decomposition of 4-t-octylphenol over NaBiO3 driven by visible light: Catalytic kinetics and corrosion products characterization. J. Hazard. Mater. 173, 765–772 (2010)

    Article  ADS  PubMed  CAS  Google Scholar 

  24. C.L. Yu, W.Q. Zhou, L.H. Zhu, G. Li, K. Yang, R.C. **, Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. App. Catal. B-Environ. 184, 1–11 (2016)

    Article  CAS  Google Scholar 

  25. J. Li, H. Yuan, Z. Zhu, Improved photoelectrochemical performance of Z-scheme g-C3N4/Bi2O3/BiPO4 heterostructure and degradation property. Appl. Surf. Sci. 385, 34–41 (2016)

    Article  ADS  CAS  Google Scholar 

  26. R. Hu, X. **n, S. Tu, X. Zuo, J. Nan, Synthesis of flower-like heterostructured β-Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol. App. Catal. B-Environ. 163, 510–519 (2015)

    Article  CAS  Google Scholar 

  27. L. Agui, P. Yanez-Sedeno, J.M. **arron, Role of carbon nanotubes in electroanalytical chemistry: a review. Anal. Chim. Acta 622, 11–47 (2008)

    Article  PubMed  Google Scholar 

  28. Y.O. Donar, S. Bilge, A. Sınağ, O. Pliekhov, TiO2/carbon materials derived from hydrothermal carbonization of waste biomass: A highly efficient, low-cost visible-light-driven photocatalyst. Chem. Cat. Chem. 10, 1134–1139 (2018)

    CAS  Google Scholar 

  29. Y.J. You, Y.X. Zhang, R.R. Li, C.H. Li, Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity. Russ. J. Phys. Chem. A 88, 2188–2191 (2014)

    Article  CAS  Google Scholar 

  30. B. Song, X. Chi, M. Zhou, F. Li, T. Li, J. Wei, O. Donghong, D. Zhang, Enhanced adsorption and dye separation ability of low-cost sepiolite acidified by polyoxometalate acid. J. Iran. Chem. Soc. 19, 1457–1465 (2022)

    Article  CAS  Google Scholar 

  31. Y.H. Guo, Y.H. Wang, C.W. Hu, Y.H. Wang, E.B. Wang, Microporous polyoxometalates POMs/ SiO2: synthesis and photocatalytic degradation of aqueous organocholorine pesticides. Chem. Mater. 12, 3501–3508 (2000)

    Article  CAS  Google Scholar 

  32. R.C. Chambers, C.L. Hill, Comparative study of polyoxometalates and semiconductor metal oxides as catalysts. Photochemical oxidative degradation of thioethers. Inorg. Chem. 30, 2776–2781 (1991)

    Article  CAS  Google Scholar 

  33. H.F. Shi, Y.C. Yu, Y. Zhang, X.J. Feng, X.Y. Zhao, H.Q. Tan, S.U. Khan, Y.G. Li, E.B. Wang, Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl. Catal. B-Environ. 221, 280–289 (2018)

    Article  CAS  Google Scholar 

  34. S.Y. Gao, Z.X. Wu, D.M. Pan, Z. Lin, R. Cao, Preparation and characterization of polyoxometalate-Ag nanoparticles composite multilayer films. Thin Solid Films 519, 2317–2322 (2011)

    Article  ADS  CAS  Google Scholar 

  35. H.F. Cheng, B.B. Huang, J.B. Lu, Z.Y. Wang, B. Xu, X.Y. Qin, X.Y. Zhang, Y. Dai, Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs. Phys. Chem. 12, 15468–15475 (2010)

    CAS  Google Scholar 

  36. R. Chen, Z.R. Shen, H. Wang, H.J. Zhou, Y.P. Liu, D.T. Ding, Y.H. Chen, Fabrication of mesh-like bismuth oxide single crystalline nanoflakes and their visible light photocatalytic activity. J. Alloys Compd. 509, 2588–2596 (2011)

    Article  CAS  Google Scholar 

  37. S.T. Hussain, S.R. Gilani, S.D. Ali, H.S. Bhatti, Decoration of carbon nanotubes with magnetic Ni1−xCoxFe2O4 nanoparticles by microemulsion method. J. Alloys Compd. 544, 99–104 (2012)

    Article  CAS  Google Scholar 

  38. Z.H. Zhang, J. Jiatieli, D.N. Liu, F.Y. Yu, S. Xue, W. Gao, Y.Y. Li, D.D. Dionysiou, Microwave induced degradation of parathion in the presence of supported anatase- and rutile-TiO2/AC and comparison of their catalytic activity. Chem. Eng. J. 231, 84–93 (2013)

    Article  CAS  Google Scholar 

  39. R.S. Wang, B.X. Li, Y. **ao, X.Q. Tao, X.T. Su, X.P. Dong, Optimizing Pd and Au-Pd decorated Bi2WO6 ultrathin nanosheets for photocatalytic selective oxidation of aromatic alcohols. J. Catal. 364, 154–165 (2018)

    Article  CAS  Google Scholar 

  40. J.W. Tang, Z.G. Zou, J.H. Ye, Photophysical and Photocatalytic Properties of AgInW2O8. J. Phys. Chem. B 51, 14265–14269 (2003)

    Article  Google Scholar 

  41. S.Z. Lam, J.C. Sin, I. Satoshi, A.Z. Abdullah, A.R. Mohamed, Enhanced sunlight photocatalytic performance over Nb2O5/ZnO nanorod composites and the mechanism study. Appl. Catal. A Gen. 471, 126–135 (2014)

    Article  CAS  Google Scholar 

  42. S.W. Zhang, J.X. Li, X.K. Wang, Y.S. Huang, M.Y. Zeng, J.Z. Xu, In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis. ACS Appl. Mater. Interfaces 6, 22116–22125 (2014)

    Article  PubMed  CAS  Google Scholar 

  43. X.X. Yao, X.H. Liu, One-pot synthesis of Ag/AgCl@SiO2 core-shell plasmonic photocatalyst in natural geothermal water for efficient photocatalysis under visible light. J. Mol. Catal. A-Chem. 393, 30–38 (2014)

    Article  CAS  Google Scholar 

  44. W. Zhao, Y. Guo, Y. Faiz, W.T. Yuan, C. Sun, S.M. Wang, Y.H. Deng, Y. Zhuang, Y. Li, X.M. Wang, H. He, S.G. Yang, Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis. Appl. Catal. B-Environ. 163, 288–297 (2015)

    Article  CAS  Google Scholar 

  45. Y.F. Liu, Y.Y. Zhu, X.J. Xu, B.R. Zong, Y.F. Zhu, Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Appl. Catal. B-Environ. 142–143, 561–567 (2013)

    Article  Google Scholar 

  46. D.S. Shtarev, A.V. Shtareva, A.I. Blokh, P.S. Goncharova, K.S. Makarevich, On the question of the optimal concentration of benzoquinone when it is used as a radical scavenger. Appl. Phys. A-Mater. 123, 602 (2017)

    Article  ADS  Google Scholar 

  47. G. Liu, Y.Z. Zhang, L. Xu, B.B. Xu, F.Y. Li, A PW12/Bi2WO6 composite photocatalyst for enhanced visible light photocatalytic degradation of organic dye pollutants. New J. Chem. 43, 3469–3475 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Doctoral Research Initiation Fund Project of Jilin Provincial Department of Science and Technology (20210203023SF), Fund Project of Jilin Province Development and Reform Commission (2021C036-4), Fund Project of Jilin Engineering Normal University (BSKJ201914, BSKJ202107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihui Liu or Peng Zhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Liu, L., Zhou, Y. et al. Photocatalytic degradation of malachite green based on PW12/MWCNTs/Bi2O3 composite photocatalyst. J IRAN CHEM SOC 21, 877–885 (2024). https://doi.org/10.1007/s13738-024-02968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-02968-1

Keywords

Navigation