Log in

Photocatalytic degradation of malachite green using hydrothermally synthesized cobalt-doped TiO2 nanoparticles

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Simple and time efficient hydrothermal method was employed to obtain phase pure anatase TiO2 and Co2+-TiO2 nanoparticles (NPs) as an efficient visible light active photocatalyst. The phase purity, morphology, optical property, and compositions were confirmed by various characterization techniques. The XRD analysis confirms the polycrystalline nature for Co2+-TiO2 photocatalyst. Raman peaks at 398, 516.89 and 640 cm−1 affirmed anatase Co2+-TiO2 NPs and XPS analysis reveals substitution of Ti4+ with Co2+ ions in TiO2 NPs. The 1.61 wt.% Co2+-TiO2 NPs has bandgap value of 2.95 eV which specifies the efficiency of material for the absorption of visible light. The obtained TiO2 and Co2+-TiO2 materials were explored for photocatalytic degradation of MG under UV, visible and direct sunlight. The removal of MG was confirmed using COD analysis. The obtained visible light active (1.61 wt.%) Co2+-TiO2 showed 82% removal of MG under direct sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Sci. 331, 746–750 (2011)

    Article  CAS  Google Scholar 

  3. H. Li, W. Zhang, D. Liu, W. Li, Template-directed synthesis of mesoporous TiO2 materials for energy conversion and storage. J. Emergent Mater. 3, 1–15 (2020)

    Article  Google Scholar 

  4. M.M. Momeni, M. Taghinejad, Y. Ghayeb, R. Bagheri, Z. Song, Preparation of various boron-doped TiO2 nanostructures by in situ anodizing method and investigation of their photoelectrochemical and photocathodic protection properties. J. Iran. Chem. Soc. 16, 1839–1851 (2019)

    Article  CAS  Google Scholar 

  5. H. Zollinger, Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, vol. 92 (VCH, New York, 1991)

    Google Scholar 

  6. R. Kamble, S. Sabale, P. Chikode, V. Puri, S. Mahajan, X. Yu, Studies on the Fe3+ do** effect on structural, optical and catalytic properties of hydrothermally synthesized TiO2 photocatalyst. Nanosci. Nanotech. Asia 7, 230–242 (2017)

    Article  CAS  Google Scholar 

  7. R.D. Chekuri, S.R. Tirukkovalluri, Synthesis of cobalt doped titania nano material assisted by gemini surfactant: characterization and application in degradation of acid red under visible light irradiation. South Afr. J. Chem. Engg. 24, 183–195 (2017)

    Article  Google Scholar 

  8. A. Chanda, K. Rout, M. Vasundhara, S.R. Joshic, J. Singh, Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. R. Soc. Chem. Adv. 8, 10939–10947 (2018)

    CAS  Google Scholar 

  9. A. Karami, Synthesis of TiO2 nano powder by the sol-gel method and its uses as a photocatalyst. J. Iran. Chem. Soc. 7, 154–160 (2010)

    Article  Google Scholar 

  10. N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, He. Chan, M. Ahmad, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. J. Appl. Surf. Sci. 258, 5827–5834 (2012)

    Article  CAS  Google Scholar 

  11. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation and characterization of Co/TiO2 nanoparticles: application to the degradation of methyl orange. J. Iran. Chem. Soc. 7, 52–58 (2010)

    Article  Google Scholar 

  12. R. Kamble, S. Sabale, P. Chikode, V. Puri, S. Mahajan, Structural characterization and photocatalytic properties of hydrothermally synthesized Ni2+-TiO2 nanoparticles for dye degradation under direct sunlight. Indian J. Chem. A. 56, 479–487 (2017)

    Google Scholar 

  13. K. Naseem, W. Khan, S. Khan, I. Uddin, W. Raza, M. Shoeb, M. Mobin, A.H. Naqvi, Enhanced photocatalytic activity by tuning of structural and optoelectrical properties of Cr(III) incorporated TiO2 nanoparticles. J. Electron. Mater. 48, 7203–7215 (2019)

    Article  CAS  Google Scholar 

  14. M.B. Marami, M. Farahmandjou, B. Khoshnevisan, Sol-gel synthesis of Fe doped TiO2 nanocrystals. J. Electron. Mater. 47, 3741–3748 (2018)

    Article  CAS  Google Scholar 

  15. V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi, A. Rostami-Vartooni, Photodegradation of aromatic amines by Ag-TiO2 photocatalyst. J. Iran. Chem. Soc. 6(4), 800–807 (2009)

    Article  CAS  Google Scholar 

  16. V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi, A. Rostami-Vartooni, Photocatalytic degradation of Azo dyes catalyzed by Ag doped TiO2 photocatalyst. J. Iran. Chem. Soc. 6(3), 578–587 (2009)

    Article  CAS  Google Scholar 

  17. N. Zhang, S. Liu, X. Fu, Y.-J. Xu, Synthesis of M@TiO2 (M = Au, Pd, Pt) Core-Shell Nanocomposites with tunable photo reactivity. J. Phys. Chem. C. 115(18), 9136–9145 (2011)

    Article  CAS  Google Scholar 

  18. E. Assayehegn, A. Solaiappan, Y. Chebudie, Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity. E. Front. Mater. Sci. 13, 352–366 (2019)

    Article  Google Scholar 

  19. J.H. Pan, G. Han, R. Zhou, X.S. Zhao, Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase 101 facets. Chem. Commun. 47, 6942–6944 (2011)

    Article  CAS  Google Scholar 

  20. D. Sarkar, S. Mukherjee, K.K. Chattopadhyay, Synthesis, characterization and high natural sunlight photocatalytic performance of cobalt doped TiO2 nanofibers. Phys. E. 50, 37–43 (2013)

    Article  CAS  Google Scholar 

  21. J. Cheng, J. Chen, W. Lin, Y. Lin, Y. Kong, Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl. Surf. Sci. 332, 573–580 (2015)

    Article  CAS  Google Scholar 

  22. M.Y. Guo, F. Liu, Y.H. Leung, A.M. Ching Ng, A.B. Djurisic, W.K. Chan, TiO2-Carbon nanotube composites for visible photocatalysts-influence of TiO2 crystal structures. Curr. Appl. Phys. 13(7), 1280–1287 (2013)

    Article  Google Scholar 

  23. S.W. Kim, R. Khan, T.J. Kim, W.J. Kim, Synthesis, characterization and application of Zr, S Co-doped TiO2 as visible-light active photocatalyst. Bull. Korean Chem. Soc. 29, 1217–1223 (2008)

    Article  CAS  Google Scholar 

  24. J. Cheng, V.K. Lazarov, G.E. Sterbinsky, B.W. Wessels, Synthesis, structural and magnet properties of epitaxial MgFe2O4 thin films by molecular beam epitaxy. J. Vac. Sci. Technol. B 27(1), 148–151 (2009)

    Article  CAS  Google Scholar 

  25. A. Ojha, P. Thareja, Graphene-based nanostructures for enhanced photocatalytic degradation of industrial dyes. J. Emergent Mater. 3, 169–180 (2020)

    Article  CAS  Google Scholar 

  26. H. Azizi-Toupkanloo, M. Karimi-Nazarabad, G.R. Amini, Immobilization of AgCl@TiO2 on the woven wire mesh: Sunlight-responsive environmental photocatalyst with high durability. Sol. Energy. 196, 653–662 (2020)

    Article  CAS  Google Scholar 

  27. M. Karimi-Nazarabad, E.K. Goharshadi, M. Aziznezhad, Solar Mineralization of hard-degradable amphetamine using TiO2/RGO nanocomposite. Chem. Select. 4, 14175–14183 (2019)

    CAS  Google Scholar 

  28. H. Zhang, T. Ji, Y. Liu, J. Cai, Preparation and characterization of room temperature ferromagnetic co-doped anatase TiO2 nanobelts. J. Phys. Chem. C. 112, 8604–8608 (2008)

    Article  CAS  Google Scholar 

  29. P.V. Gaikwad, R.J. Kamble, S.J. Mane-Gavade, S.R. Sabale, P.D. Kamble, Magneto-structural properties and photocatalytic performance of sol-gel synthesized cobalt substituted Ni-Cu ferrites for degradation of methylene blue under sunlight. Physica B: Condens. Matter. 554, 79–85 (2019)

    Article  CAS  Google Scholar 

  30. R. Kamble, S. Sabale, P. Chikode, V. Puri, S. Mahajan, Structural and photocatalytic studies of hydrothermally synthesized Mn2+-TiO2 nanoparticles under UV and visible light irradiation. Mater. Res. Express. 7, 1–10 (2016)

    Google Scholar 

  31. C. Khurana, O.P. Pandey, B. Chudasama, Synthesis of visible light-responsive cobalt doped TiO2 nanoparticles with tunable optical band gap. J. Sol-Gel Sci. Technol. 75, 424–435 (2015)

    Article  CAS  Google Scholar 

  32. S. Sharma, S. Choudhary, S.C. Kashyap, S.K. Sharma, Room temperature ferromagnetism in Mn doped TiO2 thin films: electronic structure and Raman investigations. J. Appl. Phys. 109, 083905–083907 (2011)

    Article  Google Scholar 

  33. K. Lalitha, J. Krishna Reddy, M.V. Phanikrishna Sharma, V. DurgaKumari, M. Subrahmanyam, Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: water mixtures under solar irradiation: a structure-activity correlation. Int. J. Hydrogen Energy. 35, 3991–4001 (2010)

    Article  CAS  Google Scholar 

  34. A.P. Reddy, V.L.P. Reddy, M.V. Sharma, B. Srinivas, V. DurgaKumari, M. Subrahmanyam, Photocatalytic degradation of isoproturon pesticide on C, N and S doped TiO2. J. Water. Resour. Prot. 2, 235–244 (2010)

    Article  CAS  Google Scholar 

  35. R. Kamble, S. Mahajan, V. Puri, H. Shinde, K. Garadkar, Visible light-driven high photocatalytic activity of Cu-doped TiO2 nanoparticles synthesized by hydrothermal method. Mater. Sci. Res. India. 15, 197–208 (2018)

    Article  CAS  Google Scholar 

  36. N. Gavade, S. Babar, A. Kadam, A. Gophane, K. Garadkar, Fabrication of M@ CuxO/ZnO (M=Ag, Au) heterostructured nanocomposite with enhanced photocatalytic performance under sunlight. Ind. Eng. Chem. Res. 56, 14489–14501 (2017)

    Article  CAS  Google Scholar 

  37. M. Asilturka, F. Sayılkana, E.G. Arpac, Effect of Fe3+ ion do** to TiO2 on the photocatalytic degradation of Malachite green dye under UV and vis-irradiation. J. Photochem. Photobiol. A: Chem. 203, 64–71 (2009)

    Article  Google Scholar 

  38. V. Thongpool, A. Phunpeok, S. Jaiyena, T. Sornkwanc, Synthesis and photocatalytic activity of copper and nitrogen Co-doped titanium dioxide nanoparticles. J. Results Phys. 16, 102948–102959 (2020)

    Article  Google Scholar 

  39. Z.M. Abou-Gamra, M.A. Ahmed, Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B 160, 134–141 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. M.A. Tayeb, D.S. Hussein, Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue. Am. J. Nanomater. 3, 57–63 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC-DAE Consortium for Scientific Research, Indore, Centre India, for carrying out the characterization of our sample using TEM, XPS and Raman facilities. Authors are also thankful to Department of Science and Technology, New Delhi, India, for sanctioning grant under DST-FIST program (No/SR/FST/College-151/2013(C)) to Jaysingpur College, Jaysingpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Kamble.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, R.J., Gaikwad, P.V., Garadkar, K.M. et al. Photocatalytic degradation of malachite green using hydrothermally synthesized cobalt-doped TiO2 nanoparticles. J IRAN CHEM SOC 19, 303–312 (2022). https://doi.org/10.1007/s13738-021-02303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02303-y

Keywords

Navigation