Log in

Enhanced adsorption and dye separation ability of low-cost sepiolite acidified by polyoxometalate acid

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Porous clay adsorption is one of the most economical ways to treat organic dye wastewater. However, it takes a long time and cannot separate mixed organic dyes. In this context, we used three low-concentration polyoxometalates of tungstophosphoric acid, silicotungstic acid and phosphomolybdic acid to synthesize acid-activated sepiolite (SEP) using a simple hydrothermal method. Polyoxometalates with excellent dye adsorption ability and separation ability can acidify sepiolite. From the characterization of the sample, it was found that the sepiolite after acid activation had no great influence on its crystal structure and chemical composition. It is worth noting that the morphology of the sample changed. The adsorption test experiment shows that the adsorption capacity of SEP after POMs activation is better than that of raw SEP or SEP treated with NaCl and HCl. The 0.10 mol/L H3PMo12O40-treated SEP can quickly and efficiently capture cationic dyes from mixed dye solutions, and it also has effective separation ability in MB/MO and MO/RhB mixed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.M. Ahmat, T. Thiebault, R. Guégan, Appl. Clay Sci. 180, 105–188 (2019)

    Article  Google Scholar 

  2. H. Albatrni, H. Qiblawey, F. Almomani, S. Adham, M. Khraisheh, Chemosphere 233, 809–817 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. G. Annadurai, R.S. Juang, D.J. Lee, Hazard Mater 92, 263–274 (2002)

    Article  CAS  Google Scholar 

  4. M. Attoui, E. Pouget, R. Oda, D. Talaga, L.G. Bourdon, T. Buffeteau, S. Nlate, Chem. A Eur. J 24, 11236–11236 (2018)

    Article  Google Scholar 

  5. K.V. Avramidou, F. Zaccheria, S.A. Karakoulia, K.S. Triantafyllidis, N. Ravasio, Mol. Catal. 439, 60–71 (2017)

    Article  CAS  Google Scholar 

  6. S. Bakhtiary, M. Shirvani, H. Shariatmadari, Micropor. Mesopor. Mat. 168, 30–36 (2013)

    Article  CAS  Google Scholar 

  7. C.F. Barranco, A.E. Kozioł, K. Skrzypiec, M. Rawski, M. Drewniak, A.Y. Rodriguez, Appl. Clay Sci. 127–128, 129–133 (2016)

    Article  Google Scholar 

  8. M. Bergaoui, A. Nakhli, Y. Benguerba, M. Khalfaoui, A. Erto, F.E. Soetaredjo, S. Ismadji, B. Ernst, J. Mol. Liq. 272, 697–707 (2018)

    Article  CAS  Google Scholar 

  9. Brindley, Am Mineral 44, 495–500(1959).

  10. B. Chen, Y. Jia, M. Zhang, X. Li, J. Yang, X. Zhang, Appl. Clay Sci. 174, 1–9 (2019)

    Article  CAS  Google Scholar 

  11. C. Cheng, L. Ma, J. Ren, L. Li, G. Zhang, Q. Yang, C. Zhao, Chem. Eng. J. 171, 1132–1142 (2011)

    Article  CAS  Google Scholar 

  12. M. Cobas, L. Ferreira, M.A. Sanromán, M. Pazos, Ecol Eng 70, 287–294 (2014)

    Article  Google Scholar 

  13. S. Cotillas, C. Sáez, P. Cañizares, I. Cretescu, M.A. Rodrigo, Sep. Purif. Technol. 194, 19–25 (2018)

    Article  CAS  Google Scholar 

  14. H. Dai, Y. Huang, H. Huang, Carbohyd. Polym. 185, 1–11 (2018)

    Article  Google Scholar 

  15. L.Y. Dai, M. Gong, T. Yu, X. Chen, J. Alloy. Compd. 638, 435–444 (2015)

    Article  Google Scholar 

  16. A. Demirbas, Hazard Mater. 167, 1–9 (2009)

    Article  CAS  Google Scholar 

  17. C. Deng, J. Wen, Z. Li, N. Luo, M. Huang, R. Yang, Ecotoxicol. Environ. Saf. 164, 270–276 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. E. Derakhshani, A. Naghizadeh, J. Mol. Liq. 259, 76–81 (2018)

    Article  CAS  Google Scholar 

  19. D. Du, G. Tang, Zhang and X. Wu, Chinese J Catal 36, 2219–2228 (2015)

    Article  CAS  Google Scholar 

  20. N. Frini-Srasra, E. Srasra, Desalination 250, 26–34 (2010)

    Article  CAS  Google Scholar 

  21. H. Gan, G. Zhang, Y. Guo, Colloid. Interface Sci. 386, 373–380 (2012)

    Article  CAS  Google Scholar 

  22. M. Genovese, Y.W. Foong, K. Lian, Electrochim. Acta 199, 261–269 (2016)

    Article  CAS  Google Scholar 

  23. W. Grünert, R. Feldhaus, K. Anders, E.S. Shpiro, G.V. Antoshin, K.M. Minachev, J. Electron Spectrosc. Relat. Phenom. 40, 187–192 (1986)

    Article  Google Scholar 

  24. S. Jana, J. Ray, B. Mondal, T. Tripathy, Appl. Clay Sci. 3, 46–64 (2019)

    Article  Google Scholar 

  25. Z. Jiang, L. Yonghong, X. Lei, L. Zhiyuan, Ecotoxicol. Environ. Saf. 165, 115–125 (2018)

    Article  Google Scholar 

  26. D. Karadag, M. Turan, E. Akgul, S. Tok, A. Faki, J. Chem. Eng. Data 52, 1615–1620 (2007)

    Article  CAS  Google Scholar 

  27. S.D. Khattri, M.K. Singh, Water Air Soil Pollut. 120, 283–294 (2000)

    Article  CAS  Google Scholar 

  28. S.D. Khattri and M.K. Singh, Adsorpt. Sci. Technol. 17, 26982 (1999).

  29. S. Letaief, S. Grant and C. Detellier, Appl. Clay Sci. 53, 0–243 (2011).

  30. F. Li, Y. Jiang, M. **a, M. Sun, B. Xue, X. Ren, J. Hazard. Mater. 165, 1219–1223 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. J. Li, J. Cai, L. Zhong, H. Cheng, H. Wang, Q. Ma, Appl. Clay Sci. 16, 9–22 (2018)

    Google Scholar 

  32. Q. Li, L. Zhang, Y. Xu, Q. Li, H. Xue, H. Pang, ACS Sustain. Chem. Eng. 7, 5027–5033 (2019)

    Article  CAS  Google Scholar 

  33. L. Liu, S. Wang, W. Chen, E. Wang, Mater. Lett. 78, 22–24 (2012)

    Article  CAS  Google Scholar 

  34. A. Maleki, M. Mohammad, Z. Emdadi, N. Asim, M. Azizi and J. Safaei, Arab. J. Chem. (2018).

  35. C. Mani, M. Ramalingam, S. Manickam, K.R. Srinivasalu, E. Deivanayagam, B.I. Mohammed, Chem. Select 31, 9934–9942 (2017)

    Google Scholar 

  36. A. Martínez-de la Cruz and S. Obrego´n Alfaro, Solid State Sci. 11, 829–835(2009).

  37. S. Megala, S. Prabhu, S. Harish, M. Navaneethan, S. Sohila, R. Ramesh, Appl. Surf. Sci. 481, 385–393 (2019)

    Article  CAS  Google Scholar 

  38. A. Miura, K. Nakazawa, T. Takei, N. Kumada, N. Kinomura and R. Ohki, Ceram. Int. 38, 0–0(2012).

  39. M.A. Moreira, K.J. Ciuffi, V. Rives, M.A. Vicente, Appl. Clay. Sci. 135, 394–404 (2017)

    Article  CAS  Google Scholar 

  40. P.P. Nadiminti, H. Sharma, S.R. Kada, F.M. Pfeffer, L.A. O’Dell, D.M. Cahill, ACS Sustain. Chem. Eng. 7, 10962–10970 (2019)

    Article  CAS  Google Scholar 

  41. M.S. Nikolic, R. Petrovic, D. Veljovic, V. Cosovic, N. Stankovic, J. Djonlagic, Eur. Polymer J. 97, 198–209 (2017)

    Article  CAS  Google Scholar 

  42. A.S. Özcan, B. Erdem, A. Özcan, Coll. Surf., A 266, 73–81 (2005)

    Article  Google Scholar 

  43. A.S. Özcan, A. Özcan, Sep. Sci. Technol. 3, 301–320 (2005)

    Article  Google Scholar 

  44. J. Pan, X. Zou, X. Wang, W. Guan, C. Li, Y. Yan, X. Wu, Chem. Eng. J. 166, 40–48 (2011)

    Article  CAS  Google Scholar 

  45. D. Papoulis, S. Komarneni, D. Panagiotaras, A. Nikolopoulou, H. Li, S. Yin, S. Tsugio, H. Katsuki, Appl. Clay. Sci. 83–84, 191–197 (2013)

    Article  Google Scholar 

  46. S. S. Patil, M. G. Mali, A. Roy, M. S. Tamboli, V. G. Deonikar and D. R. Patil, Energy Chem., 0, 1–9(2016).

  47. C. R. Santos Sílvia and A. R. Boaventura Rui, Chem. Eng. J., 4, 1473–1483(2016).

  48. Y.A. Sethi, R.P. Panmand, S.R. Kadam, A.K. Kulkarni, B.B. Kale, J. Colloid Interface Sci. 487, 504–512 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. F. E. Tuler, R. Portela, P. ávila, J. P. Bortolozzi, E. E. Miró and V. G. Milt, Micropor. Mesopor. Mater. 230, 11–19(2016).

  50. Y. Turhan, P. Turan, M. Dogˇan, M. Alkan, H. Namli, O. Demirbas, Ind. Eng. Che. Res. 47, 1883–1895 (2008)

    Article  CAS  Google Scholar 

  51. M. Uğurlu, Micropor. Mesopor. Mater. 119, 276–283 (2009)

    Article  Google Scholar 

  52. J.L. Valentín, M.A. López-Manchado, A. Rodríguez, P. Posadas, L. Ibarra, Appl. Clay. Sci. 36, 245–255 (2007)

    Article  Google Scholar 

  53. K. Vignesh, R. Hariharan, M. Rajarajan, A. Suganthi, Solid State Sci. 21, 91–99 (2013)

    Article  CAS  Google Scholar 

  54. V. Vimonses, S. Lei, B. **, C.W.K. Chow, C. Saint, Chem. Eng. J. 148, 354–364 (2009)

    Article  CAS  Google Scholar 

  55. D. Wang, Y. Xu, F. Sun, Q. Zhang, P. Wang, X. Wang, Appl. Surf. Sci. 377, 221–227 (2016)

    Article  CAS  Google Scholar 

  56. X.S. Wang, J. Liang, L. Li, Z.J. Lin, P.P. Bag, S.Y. Gao, Inorg. Chem. 55, 2641–2649 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. X.S. Wang, L. Liang, H. Liu, X. **e, Q. Hao, Mater. Lett. 161, 336–339 (2015)

    Article  CAS  Google Scholar 

  58. S. Yang, C. Ding, W. Cheng, Z. **, Y. Sun, J. Mol. Liq. 204, 170–175 (2015)

    Article  CAS  Google Scholar 

  59. S. Yang, Y. Wang, S. Lin, J. Fan, C. Liu, X. Yan, Chemosphere 19, 117–122 (2018)

    Google Scholar 

  60. L.D. Youcef, L.S. Belaroui, A.L. Galindo, Appl. Clay Sci. 179, 105–145 (2019)

    Google Scholar 

  61. S. Yu, L. Zhai, S. Zhong, Y. Qiu, L. Cheng, X. Ren, J. Taiwan Inst. Chem. E. 59, 221–228 (2016)

    Article  CAS  Google Scholar 

  62. Y. O. Zdemir, M. Dog˘an and M. Alkan, Micropor. Mesopor. Mater., 96, 419–427(2006).

  63. G. Zhang, Q. **ong, W. Xu, S. Guo, Appl. Clay Sci. 102, 231–237 (2014)

    Article  CAS  Google Scholar 

  64. M.G. Zhang, Chem. Eng. J. 288, 70–78 (2016)

    Article  Google Scholar 

  65. F. Zhou, C. Yan, Y. Zhang, J. Tan, H. Wang, S. Zhou, S. Pu, Appl. Clay. Sci. 124–125, 119–126 (2016)

    Article  Google Scholar 

  66. R. Hojiyev, G. Ersever, İE. Karaağaçlıoğlu, F. Karakaş, F. Boylu, Appl. Clay. Sci. 128, 105–110 (2016)

    Article  Google Scholar 

  67. S. Zhu, Q. Li, F. Li, W. Cao, T.H. Li, J. Phys. Chem. Solids. 92, 11–18 (2016)

    Article  CAS  Google Scholar 

  68. S. Vahidhabanu, A. Abideen Idowu, D. Karuppasamy, ACS Sustain. Chem. Eng., 5, 10361–10370 (2017).

Download references

Acknowledgements

The authors acknowledge with thanks the financial support of Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization and the National Natural Science Foundation of China (51965009) and Science and Technology Plan Project of Guizhou Province:[2019]5616.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taohai Li or Jianyu Wei.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 409 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Chi, X., Zhou, M. et al. Enhanced adsorption and dye separation ability of low-cost sepiolite acidified by polyoxometalate acid. J IRAN CHEM SOC 19, 1457–1465 (2022). https://doi.org/10.1007/s13738-021-02396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02396-5

Keywords

Navigation