Log in

Visible Light Induced Photocatalytic Degradation of Malachite Green by Solid State Synthesized MgFeO3–MgFe2MxO4 + δ (M = None, Mn4+, Ni2+, Zn2+, Eu3+, Dy3+, Yb3+) Nanocomposites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

MgFe2O4 composite samples were synthesized by one-step solid state reactions between MgCl2 and FeCl3 at 600, 800 and 900 °C. The doped materials were synthesized using Ni(NO3)2, MnO2, Yb2O3, Zn(NO3)2 and Eu2O3dopant raw materials at 800 °C for 12 h. The obtained materials were characterized by powder X-ray diffraction technique. Rietveld analysis data showed that the obtained MgFe2O4 materials were crystallized in the cubic crystal system with the space group Fd-3m and lattice parameters a = b = c = 8.38 Å. The morphologies of the synthesized materials were studied by field emission scanning electron microscope. The optical properties of the obtained materials showed that the materials had absorption in ultraviolet–visible light region. Direct optical band gap energies data of the obtained materials indicated that there are two band structure ranges. A strong band structure was in the range of 2.7 to 2.8 eV. The weak band structure was in the range of 1.8 to 2.0 eV. The photocatalytic performance of MgFe2O4 was also investigated for the degradation of Malachite Green (MG) in aqueous solution under direct visible light irradiation (Light power and colour: 40 W and white, respectively). The optimum conditions were obtained by design expert software for S3. It was found that the optimum conditions were 0.09 mL of H2O2, 28 mg of catalyst, and 40 min reaction time. The initial volume and concentration of MG solution were 60 mL and 70 ppm, respectively. It was found that MgFe2O4 had excellent efficiency under the optimized conditions at the presence of direct visible light irradiation. The degradation yield in the optimized conditions was 100%. According to the Langmuir–Hinshelwood (L–H) kinetic model, the kinetic degradation of MG followed a pseudo-first order kinetic model. The apparent rate constant (kapp) and correlation coefficient (R2) values were 0.1367 min−1 and 0.9225, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kirchberg K, Becker A, Bloesser A, Weller T, Timm J, Suchomski C, Marschall R (2017) J Phys Chem C 121:27126–27138

    Article  CAS  Google Scholar 

  2. Wang Z, Lazor P, Saxena SK, O’Neill HSC (2002) Mater Res Bull 37:1589–1602

    Article  CAS  Google Scholar 

  3. Zhang ZJ, Wang ZL, Chakoumakos BC, Yin JS (1998) J Am Chem Soc 120:1800–1804

    Article  CAS  Google Scholar 

  4. Tilley RJD (2004) Understanding solids. John Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  5. Antao SM, Hassan I, Parise JB (2005) Am Miner 90:219–228

    Article  CAS  Google Scholar 

  6. Xavier CS, Candeia RA, Bernardi MIB, Lima SJG, Longo E, Paskocimas CA, Soledade LEB, Souza AG, Santos IMG (2007) J Therm Anal Calorim 87:709–713

    Article  CAS  Google Scholar 

  7. Oliver SA, Willey RJ, Hamdeh HH, Oliveri G, Busca G (1995) Scr Mater 33:1695–1701

    Article  CAS  Google Scholar 

  8. Zampiva RYS, Kaufmann CG Jr, Alves AK, C P, Bergmann (2018) FME Trans 46:157–164

    Article  Google Scholar 

  9. Chaugule VV, Bangale SV (2011) Int J Microbiol Res 3:157–163

    Article  Google Scholar 

  10. Sankaramahalingam A, Lawrence JB (2012) Synth React Inorg Met 42:121–127

    Article  CAS  Google Scholar 

  11. Holec P, Plocek J, Nižňanský D, Vejpravova JP (2009) J Sol-Gel Sci Technol 51:301–305

    Article  CAS  Google Scholar 

  12. Ko¨ferstein R, Walther T, Hesse D, Ebbinghaus SG (2013) J Mater Sci 48:6509–6518

    Article  CAS  Google Scholar 

  13. Das H, Arai T, Debnath N, Sakamoto N, Shinozaki K, Suzuki H, Wakiya N (2016) Adv Powder Technol 27:541–549

    Article  CAS  Google Scholar 

  14. Nonkumwong J, Pakawanit P, Wipatanawin A, Jantaratana P, Ananta S, Srisombat L (2016) Mater Sci Eng C 61:123–132

    Article  CAS  Google Scholar 

  15. Fragassa C, Berardi L, Balsamini G (2016) FME Trans 44:333–339

    Article  Google Scholar 

  16. Reddy DHK, Yun YS (2016) Coord Chem Rev 315:90–111

    Article  CAS  Google Scholar 

  17. Kaur N, Kaur M M (2014) Process Appl Ceram 8:137–143

    Article  Google Scholar 

  18. Yakout SM, Hassan MR, Aly MI (2018) Water Sci Technol 77:2714–2722

    Article  CAS  PubMed  Google Scholar 

  19. Mulushoa SY, Wegayehu MT, Aregai GT, Murali N, Reddi MS, Babu BV, Arunamani T, Samatha K (2017) Chem Sci Trans 6:653–661

    CAS  Google Scholar 

  20. Barati MR, Selomulya C, Suzuki K (2014) Particle size dependence of heating power in MgFe2O4 nanoparticles for hyperthermia therapy application. J Appl Phys. https://doi.org/10.1063/1.4867751

    Article  Google Scholar 

  21. Rane KS, Verenkar VMS, Sawant PY (2001) Bull Mater Sci 24:323–330

    Article  CAS  Google Scholar 

  22. Nabiyouni G, Ghanbari D, Ghasemi J, Yousofnejad A (2015) J Nano Struct 5:289–295

    Google Scholar 

  23. Deraz NM, Abd-Elkader OH (2013) Int J Electrochem Sci 8:8632–8644

    CAS  Google Scholar 

  24. Hoque SM, Hakim MA, Mamun A, Akhter S, Hasan M, d T, Paul DP, Chattopadhayay K. MSA (2011) Mater Sci Appl 2:1564–1571

    CAS  Google Scholar 

  25. Iqbal MJ, Ahmad Z, Meydan T, Melikhov Y (2012) Physical, electrical and magnetic properties of nano-sized Co-Cr substituted magnesium ferrites. J Appl Phys. https://doi.org/10.1063/1.3676438

    Article  Google Scholar 

  26. Thant AA, Hlu VLE, Aung M, Htoo S, Thar WW, Kaung P (2011) Univ Res J 47–18

  27. Limei X, Fenghua Z, Bin C, Xuefeng B (2011) Preparation of light-driven spinel nanoparticles CoAl2O4, MgFe2O4 and CoFe2O4 and their photocatalytic reduction of carbon dioxide. Int Conf Comput Distrib Control Intell Environ Monit. https://doi.org/10.1109/cdciem.2011.324

    Article  Google Scholar 

  28. Singhal S, Namgyal T, Laxhmi N, Bansal S (2013) ScientiaIranica F 20:2323–2331

    Google Scholar 

  29. Sepahvand R, Mohamadzade R (2011) J Sci 22:177–182

    CAS  Google Scholar 

  30. Casbeer E, Sharma VK, Li X-Z (2012) Sep Purif Technol 87:1–14

    Article  CAS  Google Scholar 

  31. Ghelev C, Koutzarova T, Kolev S, Nedkov I, Krezhov K, Kovacheva D, Blagoev B, Vertruyen B, Henrist C, Cloots R, Zaleski A, Nizhankovskii V (2012) Magnetic properties of nanosized MgFe2O4 powders prepared by auto-combustion. J Phys: Conf Ser. https://doi.org/10.1088/1742-6596/356/1/012048

    Article  Google Scholar 

  32. He A, Lu R, Wang Y, **ang J, Li Y, He D (2017) J Nanosci Nanotech 17:3967–3974

    Article  CAS  Google Scholar 

  33. Bangale SV, Patil DR, Bamane SR (2011) Arch Appl Sci Res 3:506–513

    CAS  Google Scholar 

  34. Dayakar T, Rao KV, Chakra CS (2013) Int J Nano Sci Technol 1:01–08

    Google Scholar 

  35. Shabrawy S, El Bocker C, Rüssel C (2016) Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3, Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2016.08.007

    Article  Google Scholar 

  36. Agú UA, Oliva MI, Marchetti SG, Heredia AC, Casuscelli SG, Crivello ME (2014) J Magn Magn Mater 369:249–259

    Article  CAS  Google Scholar 

  37. Fardood ST, Golfar Z, Ramazani A (2017) J Mater Sci Mater Electron 28:17002

    Article  CAS  Google Scholar 

  38. Jung K-W, Lee S, Lee YJ (2017) Bioresour Technol 245:751–759

    Article  CAS  PubMed  Google Scholar 

  39. Omer MIM, Elbadawi AA, Yassin OA (2013) J Appl Ind Sci 1:20–23

    CAS  Google Scholar 

  40. Kubota M, Kanazawa Y, Nasu K, Moritake S, Kawaji H, Atake T, Ichiyanagi Y (2008) J Therm Anal Calorim 92:461–463

    Article  CAS  Google Scholar 

  41. Reddy S, Swamy BEK, Chandra U, Mahathesha KR, Sathishaa TV, Jayadevappa H (2011) Anal Methods 3:2792–2796

    Article  CAS  Google Scholar 

  42. Sekulić DL, Lazarević ZZ, Jovalekić ČD, Milutinović AN, Romčević NZ (2016) Sci Sinter 48: 17–28

    Article  Google Scholar 

  43. Reddy S, Swamy BEK, Chandra U, Mahathesha KR, Sathisha TV, Jayadevappa H (2011) Anal Methods 3:2792

    Article  CAS  Google Scholar 

  44. Bagheri M, Bahrevar MA, Beitollahi A (2015) Synthesis of mesoporous magnesium ferrite (MgFe2O4) using porous silica templates. Int C. https://doi.org/10.1016/j.ceramint.2015.05.121

    Article  Google Scholar 

  45. Ilhan S, Izotova SG, Komlev AA (2014) Ceram Int 41:577–585

    Article  CAS  Google Scholar 

  46. Zhang Y, Chen T, Yang L (2013) Adv Mater Res 690–693:342–350

    Google Scholar 

  47. Kanagesan S, Hashim M, Tamilselvan S, Alitheen NB, Ismail I, Bahmanrokh G (2013) Cytotoxic effect of nanocrystalline MgFe2O4 particles for cancer cure. J Nanomater. https://doi.org/10.1155/2013/865024

    Article  Google Scholar 

  48. Yu X, Fan W (2015) Fabrication and photocatalytic properties of MgFe2O4/rGO/V2O5 heterostructure nanowires. International conference on chemical, material and food engineering (CMFE-2015). The authors-Published by Atlantis Press, pp 269–272

  49. Rabanal ME, Várez A, Levenfeld B, Torralba JM (2000) Bol Soc Esp Cerám Vidrio 39:277–280

    Article  CAS  Google Scholar 

  50. Iwamoto T, Komorida Y, Mito M, Takahara A (2010) J Colloid Interface Sci 345:143

    Article  CAS  PubMed  Google Scholar 

  51. Cheng J, Lazarov VK, Sterbinsky GE, Wessels BW (2009) Synthesis, structural and magnetic properties of epitaxial MgFe2O4 thin films by molecular beam epitaxy. J Vac Sci Technol. https://doi.org/10.1116/1.3054339

    Article  Google Scholar 

  52. Uenver-thiele L, Woodland AB, Ballaran TB, Miyajima N, Frost DJ (2017) Am Miner 102:632–642

    Article  Google Scholar 

  53. Antao SM, Hassan I, Parise JB (2005) Am Mineral 90:219–228

    Article  CAS  Google Scholar 

  54. Pavlovic´ MB, Jovalekic´ C, Nikolic´A S, Manojlovic´ D, Sˇojic N (2010) Mater Sci Technol 26:968–974

    Article  CAS  Google Scholar 

  55. Kannan YB, Saravanan R, Srinivasan N, Praveena K, Sadhana K (2016) J Mater Sci Mater Electron 27:12000

    Article  CAS  Google Scholar 

  56. Sun J, Wang Z, Wang Y, Wei K, Li F (2011) Mater Sci Forum 686:316–318

    Article  CAS  Google Scholar 

  57. Tan SY, Shannigrahi SR, Tan SH, Tay FEH (2008) Synthesis and characterization of composite MgFe2O4 –BaTiO3 multiferroic system. J Appl Phys. https://doi.org/10.1063/1.2917394

    Article  Google Scholar 

  58. Turkin AI, Drebushchak VA (2005) Am Miner 90:764–767

    Article  CAS  Google Scholar 

  59. Khademinia S, Behzad M, Kafi-Ahmadi L, Hadilou S (2018) Z Anorg Allg Chem 644:221–227

    Article  CAS  Google Scholar 

  60. Hung NT, Bac LH, Trung NN, Hoang NT, Vinh PV, Dung DD (2017) Room temperature ferromagnetism in Fe-based perovskite solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 materials. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2017.11.015

    Article  Google Scholar 

  61. Persson K (2016) Mater Data MgFeO3. https://doi.org/10.17188/1292686

  62. Zhang S, Chen XJ, Gu CR, Zhang Y, Xu JD, Bian ZP, Yang D, Gu N (2009) Nanoscale Res Lett 4:70–77

    Article  CAS  Google Scholar 

  63. Kauffer E, Masson A, Moulut JC, Lecaque T, Protois JC (2005) Ann Occup Hyg 49:661–671

    CAS  PubMed  Google Scholar 

  64. Lide DR (2006) CRC Handbook of chemistry and physics. Internet Version, pp 1803–1804

  65. Mohammed RY, Abduol S, Mousa AM (2014) Int Lett Chem Phys Astron 29:91–104

    Article  Google Scholar 

  66. Kadash EA, Al Hattami AA, Rathod JR, Patel KD, Pathak VM (2014) Int J Pure Appl Sci Technol 22:18–26

    CAS  Google Scholar 

  67. Nakagomi F, Da Silva SW, Garg VK, Oliveira AC, Morais PC, Franco A Jr (2009) J Solid State Chem 182:2423–2429

    Article  CAS  Google Scholar 

  68. Rumball WM (1970) J Less Common Mater 22:287–292

    Article  CAS  Google Scholar 

  69. Pascual J, Camassel J, Mathieu M (1978) Phys Rev B: Solid State 18:5606–5614

    Article  CAS  Google Scholar 

  70. Kim HG, Borse PH, Jang JS, Jeong ED, Jung OS, Suh YJ, Lee JS (2009) Chem Commun 39:5889–5891

    Article  CAS  Google Scholar 

  71. Zazoua H, Boudjemaa A, Chebout R, Bachari K (2014) Int J Energy Res 38:2010–2018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Kafi-Ahmadi.

Ethics declarations

Conflict of interest

The authors Firouzeh Yousefzadeh, Leila Kafi-Ahmadi and Shahin Khademinia declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefzadeh, F., Kafi-Ahmadi, L. & Khademinia, S. Visible Light Induced Photocatalytic Degradation of Malachite Green by Solid State Synthesized MgFeO3–MgFe2MxO4 + δ (M = None, Mn4+, Ni2+, Zn2+, Eu3+, Dy3+, Yb3+) Nanocomposites. Catal Lett 149, 1660–1679 (2019). https://doi.org/10.1007/s10562-019-02733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02733-7

Keywords

Navigation