Log in

Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Rod milling sand (RMS)—a coarse sand aggregate—was recycled for cemented paste backfill (CPB) for the underground mined area at the **chuan nickel deposit, named rod milling sand-based cemented paste backfill (RCPB). The adverse effects of coarse particles on the transportation of CPB slurry through pipelines to underground stopes resulting in weakening of the stability of the backfill system are well known. Therefore, sulfonated naphthalene formaldehyde (SNF) condensate was used for the performance improvement of RCPB. The synergistic effect of solid content (SC), lime-to-sand ratio, and SNF dosage on the rheological and physicomechanical properties, including slump, yield stress, bleeding rate, uniaxial compressive strength (UCS), as well as mechanism analysis of RCPB, have been explored. The results indicate that the effect of SNF on RCPB performance is related to the SNF dosage, lime-to-sand ratio, and SC. The slump of fresh RCPB with 0.1wt%–0.5wt% SNF increased by 2.6%–26.2%, whereas the yield stress reduced by 4.1%–50.3%, indicating better workability and improved cohesiveness of the mix. The bleeding rate of fresh RCPB decreased first and then rose with the increase of SNF dosage, and the peak decrease was 67.67%. UCS of RCPB first increased and then decreased with the increase of SNF dosage. At the optimal SNF addition ratio of 0.3wt%, the UCS of RCPB curing for 7, 14 and, 28 d ages increased by 31.5%, 28.4%, and 29.5%, respectively. The beneficial effects of SNF in enhancing the early UCS of RCPB have been corroborated. However, the later UCS increases at a slower rate. The research findings may guide the design and preparation of RCPB with adequate performance for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yang, E. Yilmaz, J.W. Li, H. Liu, and H.Q. Jiang, Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents, Constr. Build. Mater., 187(2018), p. 290.

    Article  CAS  Google Scholar 

  2. Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440.

    Article  CAS  Google Scholar 

  3. Y.Y. Tan, E. Davide, Y.C. Zhou, W.D. Song, and X. Meng, Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 140.

    Article  CAS  Google Scholar 

  4. Q.L. Zhang, B.Y. Zhang, Q.S. Chen, D.L. Wang, and X. Gao, Safety analysis of synergetic operation of backfilling the open pit using tailings and excavating the ore deposit underground, Minerals, 11(2021), No. 8, art. No. 818.

  5. M. Sheshpari, A review of underground mine backfilling methods with emphasis on cemented paste backfill, Electron. J. Geotech. Eng., 20(2015), No. 13, p. 5183.

    Google Scholar 

  6. H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater, 27(2020), No. 1, p. 10.

    Article  CAS  Google Scholar 

  7. Y. Liu, H. Li, K. Wang, H.F. Wu, and B.Q. Cui, Effects of accelerator-water reducer admixture on performance of cemented paste backfill, Constr. Build. Mater., 242(2020), art. No. 118187.

  8. S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod., 247(2020), art. No. 119590.

  9. Q.S. Chen, Y.B. Tao, Y. Feng, Q.L. Zhang, and Y.K. Liu, Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill, J. Environ. Manage., 290(2021), art. No. 112608.

  10. F.F. Jiang, H. Zhou, J. Sheng, Y.Y. Kou, and X.D. Li, Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills, J. Cent. South Univ., 27(2020), No. 10, p. 2999.

    Article  Google Scholar 

  11. Z.Q. Yang, Key technology research on the efficient exploitation and comprehensive utilization of resources in the deep **chuan nickel deposit, Engineering, 3(2017), No. 4, p. 559.

    Article  CAS  Google Scholar 

  12. S. Wang, X.P. Song, X.J. Wang, Q.S. Chen, J.C. Qin, and Y.X. Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1065.

    Article  CAS  Google Scholar 

  13. C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025.

  14. D. Ouattara, A. Yahia, M. Mbonimpa, and T. Belem, Effects of superplasticizer on rheological properties of cemented paste backfills, Int. J. Miner. Process., 161(2017), p. 28.

    Article  CAS  Google Scholar 

  15. Y.H. Wu, Q.Q. Li, G.X. Li, S.Y. Tang, M.D. Niu, and Y.F. Wu, Effect of naphthalene-based superplasticizer and polycarboxylic acid superplasticizer on the properties of sulfoaluminate cement, Materials (Basel), 14(2021), No. 3, art. No. 662.

  16. N.S. Msinjili, W. Schmidt, B. Mota, S. Leinitz, H.C. Kühne, and A. Rogge, The effect of superplasticizers on rheology and early hydration kinetics of rice husk ash-blended cementitious systems, Constr. Build. Mater., 150(2017), p. 511.

    Article  CAS  Google Scholar 

  17. M.B.C. Mangane, R. Argane, R. Trauchessec, A. Lecomte, and M. Benzaazoua, Influence of superplasticizers on mechanical properties and workability of cemented paste backfill, Miner. Eng., 116(2018), p. 3.

    Article  CAS  Google Scholar 

  18. B. Koohestani, A.K. Darban, and P. Mokhtari, A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill, Constr. Build. Mater., 173(2018), p. 180.

    Article  CAS  Google Scholar 

  19. C.B. Cheah, W.K. Chow, C.W. Oo, and K.H. Leow, The influence of type and combination of polycarboxylate ether superplasticizer on the mechanical properties and microstructure of slag-silica fume ternary blended self-consolidating concrete, J. Build. Eng., 31(2020), art. No. 101412.

  20. S.H. Lv, H.D. Ding, T. Sun, and J.J. Liu, Effect of naphthalene superplasticizer/graphene oxide composite on microstructure and mechanical properties of hardened cement paste, J. Shaanxi Univ. Sci. Technol. Nat. Sci. Ed., 32(2014), No. 5, p. 42.

    Google Scholar 

  21. G. Tiberti, A. Conforti, and G.A. Plizzari, Precast segments under TBM hydraulic jacks: Experimental investigation on the local splitting behavior, Tunnelling Underground Space Technol., 50(2015), p. 438.

    Article  Google Scholar 

  22. F.L. Wang, F.G. Yang, Z.P. Yuan, and S.J. Yang, Effects of fly ash and chemical admixtures on the rheological properties of high-concentration full-tailing filling slurry, Adv. Civ. Eng., 2020(2020), art. No. 8872206.

  23. C.A. Anagnostopoulos, Effect of different superplasticisers on the physical and mechanical properties of cement grouts, Constr. Build. Mater., 50(2014), p. 162.

    Article  Google Scholar 

  24. S. Han, P.Y. Yan, and X.M. Kong, Study on the compatibility of cement-superplasticizer system based on the amount of free solution, Sci. China Technol. Sci., 54(2011), No. 1, p. 183.

    Article  CAS  Google Scholar 

  25. S. Haruna and M. Fall, Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer, Powder Technol., 360(2020), p. 731.

    Article  CAS  Google Scholar 

  26. Y. Nakajima and K. Yamada, The effect of the kind of calcium sulfate in cements on the dispersing ability of poly β-naphthalene sulfonate condensate superplasticizer, Cem. Concr. Res., 34(2004), No. 5, p. 839.

    Article  CAS  Google Scholar 

  27. E. Janowska-Renkas, Impact of sulphate ions content on performance of maleic and acrylic superplasticizers in cement paste, Materials (Basel), 14(2021), No. 10, art. No. 2683.

  28. J. Ren, Superplasticiser for NaOH-activated Slag: Competition and Instability between Superplasticiser and Alkali-activator [Dissertation], University College London, London, 2016.

    Google Scholar 

  29. H. Zhao, M. Deng, and M.S. Tang, The molecular structures and the application properties of sulfonated acetone-formaldehyde superplasticizers at different synthetic methods, Constr. Build. Mater., 241(2020), art. No. 118051.

  30. W.X. Cao, W. Yi, S.H. Yin, J.H. Peng, and J. Li, A novel low-density thermal insulation gypsum reinforced with superplasticizers, Constr. Build. Mater., 278(2021), art. No. 122421.

  31. M. Garg, A. Pundir, and R. Singh, Modifications in water resistance and engineering properties of β-calcium sulphate hemihydrate plaster-superplasticizer blends, Mater. Struct., 49(2016), No. 8, p. 3253.

    Article  CAS  Google Scholar 

  32. National Standards Administration Committee of China, GB 8076–2008: Concrete Admixtures, China Standard Press, Bei**g, 2009.

    Google Scholar 

  33. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD), JGJ/T70–2009: Standard for Test Method of Performance on Building Mortar, China Building Industry Press, Bei**g, 2009.

    Google Scholar 

  34. S.X. Hu, F.H. Jiang, J.G. Li, C.N. Wu, K. Liu, and Y.M. Chen, Understanding the adsorption behaviors of naphthalene sulfonate formaldehyde in coal water slurry, Colloids Surf. A, 628(2021), art. No. 127245.

  35. L. Huynh and P. Jenkins, A rheological and electrokinetic investigation of the interactions between pigment particles dispersed in aqueous solutions of short-chain phosphates, Colloids Surf. A, 190(2001), No. 1–2, p. 35.

    Article  CAS  Google Scholar 

  36. G. Zhang, G.X. Li, and Y.C. Li, Effects of superplasticizers and retarders on the fluidity and strength of sulphoaluminate cement, Constr. Build. Mater., 126(2016), p. 44.

    Article  CAS  Google Scholar 

  37. J. Zhang, S.C. Li, Z.F. Li, C. Liu, Y.F. Gao, and Y.H. Qi, Properties of red mud blended with magnesium phosphate cement paste: Feasibility of grouting material preparation, Constr. Build. Mater., 260(2020), art. No. 119704.

  38. National Standards Administration Committee of China, GB/T 2419–2005: Test Method for Fluidity of Cement Mortar, China Standard Press, Bei**g, 2005.

    Google Scholar 

  39. A.X. Wu, Y. Wang, and H.J. Wang, Estimation model for yield stress of fresh uncemented thickened tailings: Coupled effects of true solid density, bulk density, and solid concentration, Int. J. Miner. Process., 143(2015), p. 117.

    Article  CAS  Google Scholar 

  40. D. Simon and M. Grabinsky, Apparent yield stress measurement in cemented paste backfill, Int. J. Min. Reclam. Environ., 27(2013), No. 4, p. 231.

    Article  CAS  Google Scholar 

  41. Y. Qian and S. Kawashima, Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy, Cem. Concr. Compos., 86(2018), p. 288.

    Article  CAS  Google Scholar 

  42. ASTM International, ASTM D2166/D2166M-16: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM international, West Conshohocken, 2016.

    Google Scholar 

  43. X.F. Cui, G.M. Liu, C.L. Wang, and Y.D. Qi, Effects of PET fibers on pumpability, shootability, and mechanical properties of wet-mix shotcrete, Adv. Civ. Eng., 2019(2019), art. No. 2756489.

  44. X.J. Deng, J.X. Zhang, B. Klein, N. Zhou, and B. de Wit, Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill, Int. J. Miner. Process., 168(2017), p. 116.

    Article  CAS  Google Scholar 

  45. J.P. Qiu, L. Yang, X.G. Sun, J. **ng, and S.B. Li, Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill, Minerals, 7(2017), No. 4, art. No. 58.

  46. J.A. Lewis, H. Matsuyama, G. Kirby, S. Morissette, and J.F. Young, Polyelectrolyte effects on the rheological properties of concentrated cement suspensions, J. Am. Ceram. Soc., 83(2004), No. 8, p. 1905.

    Article  Google Scholar 

  47. J.W. Peng, D.H. Deng, H. Huang, Q. Yuan, and J.G. Peng, Influence of superplasticizer on the rheology of fresh cement asphalt paste, Case Stud. Constr. Mater., 3(2015), p. 9.

    Google Scholar 

  48. J.F. Zhu, G.H. Zhang, Z. Miao, and T. Shang, Synthesis and performance of a comblike amphoteric polycarboxylate dispersant for coal-water slurry, Colloids Surf. A, 412(2012), p. 101.

    Article  CAS  Google Scholar 

  49. X.C. Wang, S.C. Li, A.N. Zhou, R.T. Liu, S.L. Duan, and M. Wang, Influence of the bleeding characteristic on density and rheology in cement slurry, Constr. Build. Mater., 269(2021), art. No. 121316.

  50. Y. Peng, R.A. Lauten, K. Reknes, and S. Jacobsen, Bleeding and sedimentation of cement paste measured by hydrostatic pressure and Turbiscan, Cem. Concr. Compos., 76(2017), p. 25.

    Article  CAS  Google Scholar 

  51. N. Massoussi, E. Keita, and N. Roussel, The heterogeneous nature of bleeding in cement pastes, Cem. Concr. Res., 95(2017), p. 108.

    Article  CAS  Google Scholar 

  52. J.R. Zheng, Y.L. Zhu, and Z.B. Zhao, Utilization of limestone powder and water-reducing admixture in cemented paste backfill of coarse copper mine tailings, Constr. Build. Mater., 124(2016), p. 31.

    Article  CAS  Google Scholar 

  53. K. Klein and D. Simon, Effect of specimen composition on the strength development in cemented paste backfill, Can. Geotech. J., 43(2006), No. 3, p. 310.

    Article  CAS  Google Scholar 

  54. L. Cui and M. Fall, Multiphysics model for consolidation behavior of cemented paste backfill, Int. J. Geomech., 17(2017), No. 3, art. No. 04016077.

  55. H.Z. Jiao, Y.C. Wu, H. Wang, X.M. Chen, Z. Li, Y.F. Wang, B.Y. Zhang, and J.H. Liu, Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener, Miner. Eng., 173(2021), art. No. 107043.

  56. Y.F. Guo, B.G. Ma, Z.Z. Zhi, H.B. Tan, M.Y. Liu, S.W. Jian, and Y.L. Guo, Effect of polyacrylic acid emulsion on fluidity of cement paste, Colloids Surf. A, 535(2017), p. 139.

    Article  CAS  Google Scholar 

  57. H.Y. Lu, X.F. Li, C.Q. Zhang, J.Y. Chen, L.G. Ma, W.H. Li, and D.P. Xu, Experiments and molecular dynamics simulations on the adsorption of naphthalenesulfonic formaldehyde condensates at the coal-water interface, Fuel, 264(2020), art. No. 116838.

  58. S.S. Qian, Y. Yao, Z.M. Wang, S.P. Cui, X. Liu, H.D. Jiang, Z.L. Guo, G.H. Lai, Q. Xu, and J.N. Guan, Synthesis, characterization and working mechanism of a novel polycarboxylate superplasticizer for concrete possessing reduced viscosity, Constr. Build. Mater., 169(2018), p. 452.

    Article  CAS  Google Scholar 

  59. K.L. Wang, Y.L. Ding, Z.C. Wang, and B. Du, Development of aromatic water reducer for concrete, J. Shandong Inst. Build. Mater., 18(2004), No. 3, p. 205.

    Google Scholar 

  60. X.M. Kong, Y.R. Zhang, and S.S. Hou, Study on the rheological properties of Portland cement pastes with polycarboxylate superplasticizers, Rheol. Acta, 52(2013), No. 7, p. 707.

    Article  CAS  Google Scholar 

  61. E. Knapen, O. Cizer, K. van Balen, and D. van Gemert, Effect of free water removal from early-age hydrated cement pastes on thermal analysis, Constr. Build. Mater., 23(2009), No. 11, p. 3431.

    Article  Google Scholar 

  62. J.Z. Li, Y. Zhang, and X.M. Cui, The influence of free water content on dielectric properties of alkali active slag cement paste, J. Wuhan Univ. Technol. Mater Sci. Ed., 22(2007), No. 4, p. 774.

    Article  CAS  Google Scholar 

  63. S.X. Hu, J.G. Li, X. Yang, Y.M. Chen, F.H. Li, J.F. Wang, C.N. Wu, L. Weng, and K. Liu, Improvement on slurry ability and combustion dynamics of low quality coals with ultra-high ash content, Chem. Eng. Res. Des., 156(2020), p. 391.

    Article  CAS  Google Scholar 

  64. A. Pundir, M. Garg, and R. Singh, Evaluation of properties of gypsum plaster-superplasticizer blends of improved performance, J. Build. Eng., 4(2015), p. 223.

    Article  Google Scholar 

  65. E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater., 75(2015), p. 99.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52104156, 5207 4351, and 52004330), the Science and Technology Innovation Program of Hunan Province, China (No. 2021RC3125), and the Natural Science Foundation of Hunan Province, China (No. 2022JJ30714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Feng.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wu, H., Feng, Y. et al. Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate. Int J Miner Metall Mater 30, 225–235 (2023). https://doi.org/10.1007/s12613-021-2397-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2397-9

Keywords

Navigation