Log in

Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Cemented tailings backfill (CTB) structures are important components of underground mine stopes. It is important to investigate the characteristics and dynamic behavior of CTB materials because they are susceptible to disturbance by dynamic loading, such as excavation and blasting. In this study, the authors present the results of a series of Split-Hopkinson pressure bar (SHPB) single and cyclic impact loading tests on CTB specimens to investigate the long-term dynamic mechanical properties of CTB. The stress-strain relationship, dynamic strength, and dynamic failure characteristics of CTB specimens are analyzed and discussed to provide valuable conclusions that will improve our knowledge of CTB long-term mechanical behavior and characteristics. For instance, the dynamic peak stress under cyclic impact loading is approximately twice that under single impact loading, and the CTB specimens are less prone to fracture when cyclically loaded. These findings and conclusions can provide a new set of references for the stability analysis of CTB materials and help guide mine designers in reducing the amount of binding agents and the associated mining cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. He, H.P. **e, S.P. Peng, and Y.D. Jiang, Study on rock mechanics in deep mining engineering, Chin. J. Rock Mech. Eng., 24(2005), No. 16, p. 2803.

    Google Scholar 

  2. Q. Wang and F.Y. Ren, Mining Science, Metallurgical Industry Press, Bei**g, 2011, p. 327.

    Google Scholar 

  3. F.P. Hassani, A. Mortazavi, and M. Shabani, An investigation of mechanisms involved in backfill-rock mass behavior in narrow vein mining, J. South Afr. Inst. Min. Metall., 108(2008), No. 8, p. 463.

    Google Scholar 

  4. R. Rankine, M. Pacheco, and N. Sivakugan, Underground mining with backfills, Soils Rocks, 30(2007), No. 2, p. 93.

    Google Scholar 

  5. X.X. Miao, J.X. Zhang, and G.L. Guo, Study on waste backfilling method and technology in fully mechanized coal mining, J. Chin. Coal Soc., 2010, 35(1): 1.

    Google Scholar 

  6. M. Benzaazoua, B. Bussière, I. Demers, M. Aubertin, E. Fried, and A. Blier, Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill, Application to mine Doyon, Quebec, Canada., Miner. Eng., 21(2008), No. 4, p. 330.

    Article  CAS  Google Scholar 

  7. L. Yang, J.P. Qiu, H.Q. Jiang, S.Q. Hu, H. Li, and S.B. Li, Use of cemented super-fine unclassified tailings backfill for control of subsidence, Minerals, 7(2017), p. 216.

    Article  Google Scholar 

  8. J.X. Zhang, B.Y. Li, N. Zhou, and Q. Zhang, Application of solid backfilling to reduce hard-roof caving and longwall coal face burst potential, Int. J. Rock Mech. Min. Sci., 88(2016), p. 197.

    Article  Google Scholar 

  9. D.Q. Deng, L. Liu, Z.L. Yao, K.I. Song, and D.Z. Lao, A practice of ultra-fine tailings disposal as filling material in a gold mine, J. Environ. Manage., 196(2017), p. 100.

    Article  CAS  Google Scholar 

  10. X. Ke, H. Hou, M. Zhou, Y. Wang, and X. Zhou, Effect of particle gradation on properties of fresh and hardened cemented paste backfill, Constr. Build. Mater., 96(2015), p. 378.

    Article  Google Scholar 

  11. A. Khoshand and M. Fall, Geotechnical characterization of peat-based landfill cover materials, J. Rock Mech. Geotech. Eng., 8(2016), No. 5, p. 596.

    Article  Google Scholar 

  12. C. Liang and M. Fall, Mechanical and thermal properties of cemented tailings materials at early ages: Influence of initial temperature, curing stress and drainage conditions, Constr. Build. Mater., 125(2016), p. 553.

    Article  CAS  Google Scholar 

  13. L. Dong, Q. Gao, S.Q. Nan, and J.Q. Du, Performance and hydration mechanism of new super fine cemented whole-tailings backfilling materials, J. Cent. South Univ., 44(2013), No. 4, p. 1571.

    CAS  Google Scholar 

  14. J.H. Sun, Y.M. Dou, J. Zhou, and B. Li, Experimental study on the affect to compressive property of concrete caused by strain rate, China Concr. Cem. Prod., 5(2011), p. 1.

    Google Scholar 

  15. Z.X. Liu and X.B. Li, Research on stability of high-level backfill in blasting, Min. Metall. Eng., 24(2004), No. 3, p. 21.

    Google Scholar 

  16. N. Li, K.P. Zhou, D. Pan, and H.L. Zhu, Study on intensity response of rubble backfill to dynamical loading of medium-length hole blasting, Min. Metall. Eng., 31(2011), No. 4, p. 9.

    Google Scholar 

  17. Q.L. Zhang, W. Yang, S. Yang, and X.M. Wang, Test research on stability of high-density total tailing cemented backfilling under dynamical loading, Chin. Saf. Sci. J., 25(2015), No. 3, p. 78.

    Google Scholar 

  18. G.Y. Zhao, H. Wu, Y. Chen, Z.W. Xu, and Z.Y. Li, Experimental study on load-bearing mechanism and compaction characteristics of mine filling materials, J. Chin. Univ. Min. Technol., 6(2017), p. 1251.

    Google Scholar 

  19. W.B. Xu, X.C. Tian, and P.W. Cao, Assessment of hydration process and mechanical properties of cemented paste backfill by electrical resistivity measurement, Nondestr. Test. Eval., 33(2018), No. 2, p. 198.

    Article  Google Scholar 

  20. W.B. Xu, P.W. Cao, and M.M. Tian, Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents, Minerals, 8(2018), No. 4, p. 167.

    Article  CAS  Google Scholar 

  21. S. Cao, W.D. Song, and E. Yilmaz, Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., 174(2018), p. 190.

    Article  Google Scholar 

  22. S. Cao and W.D. Song, Effect of filling interval time on the mechanical strength and ultrasonic properties of cemented coarse tailing backfill, Int. J. Miner. Process., 166(2017), p. 62.

    Article  CAS  Google Scholar 

  23. E. Yilmaz, Investigating the Hydro-geotechnical and Microstructural Properties of Cemented Paste Backfills Using the Versatile CUAPS Apparatus [Dissertation], Université du Québec en Abitibi-Témiscamingue UQAT, Rouyn-Noranda, QC, 2010, p. 1.

    Google Scholar 

  24. R.J. Chen, H.W. Liu, and R. Zeng, SHPB dynamical experiment on silica fume concrete, Adv. Mater. Res., 631–632(2013), p. 771.

    Article  CAS  Google Scholar 

  25. J. Dai, Dynamical Behaviors and Blasting Theory of Rock, Metallurgical Industry Press, Bei**g, 2002, p. 60.

    Google Scholar 

  26. C.E. Fairhurst and J.A. Hudson, Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression, Int. J. Rock Mech. Min. Sci., 36(1999), No. 3, p. 279.

    Article  Google Scholar 

  27. J.Y. Xu, J.S. Fan, and X.C. Lv, Dynamical Mechanical Properties of Rock with the Confining Pressure, Northwestern Polytechnical University Press, **’an, 2012, p. 56.

    Google Scholar 

  28. S.C. Peng, C.C. Chen, J. Xu, H.L. Zhang, and Y. Tang, W. Nie, K. Zhao, Loading rate dependency of rock stress-strain curve based on Brazil splitting test, Chin. J. Rock Mech. Eng., 37(2018), No. Supp.1, p. 3247.

    Google Scholar 

  29. F.Q. Gong, X.B. Li, Q.H. Rao, and X.L. Liu, Reference method for determining sample size in SHPB tests of rock materials, J. Vib. Shock, 32(2013), No. 17, p. 24.

    Google Scholar 

  30. Z. Pan, J.G. Sanjayan, and B.V. Rangan, Fracture properties of geopolymer paste and concrete, Mag. Concr. Res., 63(2011), No. 10, p. 763.

    Article  CAS  Google Scholar 

  31. M. Mastali and A. Dalvand, The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces, Compos. Part B, 92(2016), p. 360.

    Article  CAS  Google Scholar 

  32. J.Z. Liu, J.Y. Xu, and X.C. Lu, Experimental study on dynamical mechanical properties of amphibolies under impact compressive loading, Chin. J. Rock Mech. Eng., 28(2009), No. 10, p. 2113.

    Google Scholar 

  33. S. Ouellet, B. Bussière, M. Aubertin, and M. Benzaazoua, Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results, Cem. Concr. Res., 37(2007), No. 12, p. 1654.

    Article  CAS  Google Scholar 

  34. S.S. Wang, M.H. Zhang, and S.T. Quest, Effect of sample size on static strength and dynamical increase factor of high-strength concrete from SHPB test, J. Test. Eval., 39(2011), No. 5, p. 10.

    Google Scholar 

  35. X.B. Li, F.Q. Gong, K. Gao, J. Zhao, and S.B. Yin, Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads, Chin. J. Rock Mech. Eng., 29(2010), No. 2, p. 251.

    Google Scholar 

  36. Y.Y. Tan, J. Wang, W.D. Song, L.H. Xu, and S. Cao, Experimental study on mechanical properties of cemented tailings backfill under cycle dynamic loading test, J. Min. Saf. Eng., 1(2019), No. 36, p. 184.

    Google Scholar 

  37. P. Li, F.H. Ren, M.F. Cai, Q.F. Guo, H.F. Wang, and K. Liu, Investigating the mechanical and acoustic emission characteristics of brittle failure around a circular opening under uniaxial loading, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1217.

    Article  Google Scholar 

  38. H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, and J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1594.

    Article  CAS  Google Scholar 

  39. Y.Y. Tan, X. Yu, W.D. Song, H.P. Wang, and S. Cao, Experimental study on combined pressure-bearing mechanism of filling body and surrounding rock, J. Min. Saf. Eng., 5(2018), No. 35, p. 1071.

    Google Scholar 

  40. Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 404.

    Article  CAS  Google Scholar 

  41. W.B. Xu, Y. Cao, and B.G. Liu, Strength efficiency evaluation of cemented tailings backfill with different stratified structures, Eng. Struct., 180(2019), p. 18.

    Article  Google Scholar 

  42. J.X. Fu, C.F. Du, and W.D. Song, Strength sensitivity and failure mechanism of full tailings cemented backfills, J. Univ. Sci. Technol. Bei**g, 36(2014), No. 9, p. 1149.

    CAS  Google Scholar 

  43. D.Q. Deng, Y.L. Yang, and Z.L. Yao, Research on constitutive equation of damage evolution of backfill based on the full tensile and compressive process, J. Min. Saf. Eng., 23(2007), No. 4, p. 485.

    Google Scholar 

  44. Y.F. Li, J.M. Zhang, F. Deng, and S.W. Bai, Experimental study on strength characteristics of tailings cement backfilling at deep-seated mined-out eare, Rock Soil Mech., 26(2005), No. 6, p. 865.

    CAS  Google Scholar 

  45. C. Liu, B. Han, W. Sun, J.X. Wu, S. Yao, and H.Y. Hu, Experimental study of strength of backfilling of cemented rock debris and its application under low temperature condition, Chin. J. Rock Mech. Eng., 34(2015), No. 1, p. 139.

    CAS  Google Scholar 

  46. X. Zhao, A. Fourie, and C.C. Qi, An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1206.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2017YFC0602900), the Fundamental Research Funds for the Central Universities (No. FRF-TP-17-029A2), and the Open Fund of Key Laboratory of High-Efficient Mining and Safety of Metal Mines (Ministry of Education of China, No. ustbmslab201803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmo Davide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Yy., Davide, E., Zhou, Yc. et al. Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading. Int J Miner Metall Mater 27, 140–151 (2020). https://doi.org/10.1007/s12613-019-1878-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1878-6

Keywords

Navigation