Log in

Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Phosphogypsum (PG) is a typical by-product of phosphoric acid and phosphate fertilizers during acid digestion. The application of cemented paste backfill (CPB) has been feasibly investigated for the remediation of PG. The present study evaluated fluorine immobilization mechanisms and attempted to construct a related thermodynamic and geochemical modeling to describe the related stabilization performance. Physico-chemical and mineralogical analyses were performed on PG and hardened PG-based CPB (PCPB). The correlated macro- and microstructural properties were obtained from the analysis of the combination of unconfined compressive strength and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy imaging. Acid/base-dependent leaching tests were performed to ascertain fluoride leachability. In addition, Gibbs Energy Minimization Software and PHREEQC were applied as tools to characterize the PCPB hydration and deduce its geochemical characteristics. The results proved that multiple factors are involved in fluorine stabilization, among which the calcium silicate hydrate gel was found to be associated with retention. Although the quantitative comparison with the experimental data shows that further modification should be introduced into the simulation before being used as a predictive implement to determine PG management options, the importance of acid/base concentration in regulating the leaching behavior was confirmed. Moreover, the modeling enabled the identification of the impurity phases controlling the stability and leachability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.S. Chen, Q.L. Zhang, C.C. Qi, A. Fourie, and C.C. **ao, Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact, J. Cleaner Prod., 186(2018), p. 418.

    Article  CAS  Google Scholar 

  2. M. Tsioka and E.A. Voudrias, Comparison of alternative management methods for phosphogypsum waste using life cycle analysis, J. Cleaner Prod., 266(2020), art. No. 121386.

  3. D. Cordell, J.O. Drangert, and S. White, The story of phosphorus: Global food security and food for thought, Glob. Environ. Change, 19(2009), No. 2, p. 292.

    Article  Google Scholar 

  4. J.P. Xu, L.R. Fan, Y.C. **e, and G. Wu, Recycling-equilibrium strategy for phosphogypsum pollution control in phosphate fertilizer plants, J. Cleaner Prod., 215(2019), p. 175.

    Article  CAS  Google Scholar 

  5. F. Macías, R. Pérez-López, C.R. Cánovas, S. Carrero, and P. Cruz-Hernandez, Environmental assessment and management of phosphogypsum according to European and United States of America regulations, Procedia Earth Planet. Sci., 17(2017), p. 666.

    Article  Google Scholar 

  6. B. Geissler, L. Hermann, M. Mew, and G. Steiner, Striving toward a circular economy for phosphorus: The role of phosphate rock mining, Minerals, 8(2018), No. 9, art. No. 395.

  7. A.M. Rashad, Phosphogypsum as a construction material, J. Cleaner Prod., 166(2017), p. 732.

    Article  CAS  Google Scholar 

  8. L. Yang, Y.S. Zhang, and Y. Yan, Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar, J. Cleaner Prod., 127(2016), p. 204.

    Article  CAS  Google Scholar 

  9. M.R. Gorman and D.A. Dzombak, A review of sustainable mining and resource management: Transitioning from the life cycle of the mine to the life cycle of the mineral, Resour. Conserv. Recycl., 137(2018), p. 281.

    Article  Google Scholar 

  10. E. Saadaoui, N. Ghazel, C. Ben Romdhane, and N. Massoudi, Phosphogypsum: Potential uses and problems—A review, J. Environ. Stud., 74(2017), No. 4, p. 558.

    Article  CAS  Google Scholar 

  11. X.B. Li, J. Du, L. Gao, S.Y. He, L. Gan, C. Sun, and Y. Shi, Immobilization of phosphogypsum for cemented paste backfill and its environmental effect, J. Cleaner Prod., 156(2017), p. 137.

    Article  CAS  Google Scholar 

  12. H. Tayibi, M. Choura, F.A. López, F.J. Alguacil, and A. López-Delgado, Environmental impact and management of phosphogypsum, J. Environ. Manage., 90(2009), No. 8, p. 2377.

    Article  CAS  Google Scholar 

  13. S.H. Yin, Y.J. Shao, A.X. Wu, Z.Y. Wang, and L.H. Yang, Assessment of expansion and strength properties of sulfidic cemented paste backfill cored from deep underground stopes, Constr. Build. Mater., 230(2020), art. No. 116983.

  14. H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10.

    Article  CAS  Google Scholar 

  15. S. Cao, G.L. Xue, E. Yilmaz, and Z.Y. Yin, Assessment of rheological and sedimentation characteristics of fresh cemented tailings backfill slurry, Int. J. Min. Reclam. Environ., 35(2021), No. 5, p. 319.

    Article  CAS  Google Scholar 

  16. Q.S. Chen, Q.L. Zhang, A. Fourie, and C. **n, Utilization of phosphogypsum and phosphate tailings for cemented paste backfill, J. Environ. Manage., 201(2017), p. 19.

    Article  CAS  Google Scholar 

  17. X.L. Xue, Y.X. Ke, Q. Kang, Q.L. Zhang, C.C. **ao, F.J. He, and Q. Yu, Cost-effective treatment of hemihydrate phosphogypsum and phosphorous slag as cemented paste backfill material for underground mine, Adv. Mater. Sci. Eng., 2019(2019), art. No. 9087538.

  18. C.D. Min, X.B. Li, S.Y. He, S.T. Zhou, Y.N. Zhou, S. Yang, and Y. Shi, Effect of mixing time on the properties of phosphogypsum-based cemented backfill, Constr. Build. Mater., 210(2019), p. 564.

    Article  CAS  Google Scholar 

  19. X.B. Li, S.T. Zhou, Y.N. Zhou, C.D. Min, Z.W. Cao, J. Du, L. Luo, and Y. Shi, Durability evaluation of phosphogypsumbased cemented backfill through drying-wetting cycles, Minerals, 9(2019), No. 5, art. No. 321.

  20. Y. Huang and Z.S. Lin, Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement, Constr. Build. Mater., 24(2010), No. 7, p. 1296.

    Article  Google Scholar 

  21. M. Singh, Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster, Cem. Concr. Res., 33(2003), No. 9, p. 1363.

    Article  CAS  Google Scholar 

  22. W.H. Kang, E.I. Kim, and J.Y. Park, Fluoride removal capacity of cement paste, Desalination, 202(2007), No. 1–3, p. 38.

    Article  CAS  Google Scholar 

  23. R. Boncukcuoğlu, M.T. Yılmaz, M.M. Kocakerim, and V. Tosunoğlu, Utilization of borogypsum as set retarder in Portland cement production, Cem. Concr. Res., 32(2002), No. 3, p. 471.

    Article  Google Scholar 

  24. S. Kagne, S. Jagtap, P. Dhawade, S.P. Kamble, S. Devotta, and S.S. Rayalu, Hydrated cement: A promising adsorbent for the removal of fluoride from aqueous solution, J. Hazard. Mater., 154(2008), No. 1–3, p. 88.

    Article  CAS  Google Scholar 

  25. V. Gopal and K.P. Elango, Equilibrium, kinetic and thermodynamic studies of adsorption of fluoride onto plaster of Paris, J. Hazard Mater., 141(2007), No. 1, p. 98.

    Article  CAS  Google Scholar 

  26. B.I. Silveira, A.E.M. Dantas, J.E.M. Blasques, and R.K.P. Santos, Effectiveness of cement-based systems for stabilization and solidification of spent pot liner inorganic fraction, J. Hazard. Mater., 98(2003), No. 1–3, p. 183.

    Article  CAS  Google Scholar 

  27. K. Gijbels, H. Nguyen, P. Kinnunen, P. Samyn, W. Schroeyers, Y. Pontikes, S. Schreurs, and M. Illikainen, Radiological and leaching assessment of an ettringite-based mortar from ladle slag and phosphogypsum, Cem. Concr. Res., 128(2020), art. No. 105954.

  28. M.A. Hwaiti, Influence of treated waste phosphogypsum materials on the properties of ordinary Portland cement, Bangladesh J. Sci. Ind. Res., 50(2015), No. 4, p. 241.

    Article  Google Scholar 

  29. P.E. Tsakiridis, P. Oustadakis, and S. Agatzini-Leonardou, Black dross leached residue: An alternative raw material for Portland cement clinker, Waste Biomass Valorization, 5(2014), No. 6, p. 973.

    Article  CAS  Google Scholar 

  30. G. Dartan, F. Taspinar, and İ. Toroz, Analysis of fluoride pollution from fertilizer industry and phosphogypsum piles in agricultural area, J. Ind. Pollut. Control, 33(2017), No. 1, p. 662.

    CAS  Google Scholar 

  31. N. Adimalla, S.K. Marsetty, and P.P. Xu, Assessing groundwater quality and health risks of fluoride pollution in the Shasler Vagu (SV) watershed of Nalgonda, India, Hum. Ecol. Risk Assess., 26(2020), No. 6, p. 1569.

    Article  CAS  Google Scholar 

  32. X.Q. Tang, M. Wu, X.C. Dai, and P.H. Chai, Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking water source reservoir and its relation with sediment compositions, Ecol. Eng., 64(2014), p. 276.

    Article  Google Scholar 

  33. M.W. Wang, L. Liu, H.J. Li, Y.G. Li, H.L. Liu, C.C. Hou, Q. Zeng, P. Li, Q. Zhao, L.X. Dong, G.Y. Zhou, X.C. Yu, L. Liu, Q. Guan, S. Zhang, and A.G. Wang, Thyroid function, intelligence, and low-moderate fluoride exposure among Chinese school-age children, Environ. Int., 134(2020), art. No. 105229.

  34. W.C. Burnett and A.W. Elzerman, Nuclide migration and the environmental radiochemistry of Florida phosphogypsum, J. Environ. Radioact., 54(2001), No. 1, p. 27.

    Article  CAS  Google Scholar 

  35. M. Tafu and T. Chohji, Reaction between calcium phosphate and fluoride in phosphogypsum, J. Eur. Ceram. Soc., 26(2006), No. 4–5, p. 767.

    Article  CAS  Google Scholar 

  36. H.E. Jamieson, S.R. Walker, and M.B. Parsons, Mineralogical characterization of mine waste, Appl. Geochem., 57(2015), p. 85.

    Article  CAS  Google Scholar 

  37. X.B. Li, Y.N. Zhou, Q.Q. Zhu, S.T. Zhou, C.D. Min, and Y. Shi, Slurry preparation effects on the cemented phosphogypsum backfill through an orthogonal experiment, Minerals, 9(2019), No. 1, art. No. 31.

  38. B. Lothenbach, D.A. Kulik, T. Matschei, M. Balonis, L. Baquerizo, B. Dilnesa, G.D. Miron, and R.J. Myers, Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials, Cem. Concr. Res., 115(2019), p. 472.

    Article  CAS  Google Scholar 

  39. T. Wagner, D.A. Kulik, F.F. Hingerl, and S.V. Dmytrieva, Gem-selektor geochemical modeling package: Tsolmod library and data interface for multicomponent phase models, Can. Mineral., 50(2012), No. 5, p. 1173.

    Article  CAS  Google Scholar 

  40. D.A. Kulik, T. Wagner, S.V. Dmytrieva, G. Kosakowski, F.F. Hingerl, K.V. Chudnenko, and U.R. Berner, GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes, Comput. Geosci., 17(2013), No. 1, p. 1.

    Google Scholar 

  41. D.L. Parkhurst and C.A.J. Appelo, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, [in] U.S. Geological Survey Techniques and Methods, book 6, chap. A43, U.S. Geological Survey, Denver, 2013, p. 497.

    Google Scholar 

  42. R.W. Scholz, A.E. Ulrich, M. Eilittä, and A. Roy, Sustainable use of phosphorus: A finite resource, Sci. Total Environ., 461–462(2013), p. 799.

    Article  CAS  Google Scholar 

  43. Q.S. Chen, Q.L. Zhang, C.C. **ao, and X. Chen, Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings, PLoS One, 12(2017), No. 6, art. No. e0179872.

  44. H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, and J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1594.

    Article  CAS  Google Scholar 

  45. F.B. Chen, B. Xu, H.Z. Jiao, X.M. Chen, Y.L. Shi, J.X. Wang, and Z. Li, Triaxial mechanical properties and microstructure visualization of BFRC, Constr. Build. Mater., 278(2021), art. No. 122275.

  46. H.Z. Jiao, Y.C. Wu, W. Wang, X.M. Chen, Y.F. Wang, J.H. Liu, and W.T. Feng, The micro-scale mechanism of metal mine tailings thickening concentration improved by shearing in gravity thickener, J. Renewable Mater., 9(2021), No. 4, p. 637.

    Article  CAS  Google Scholar 

  47. Q.S. Chen, Q.L. Zhang, A. Fourie, X. Chen, and C.C. Qi, Experimental investigation on the strength characteristics of cement paste backfill in a similar stope model and its mechanism, Constr. Build. Mater., 154(2017), p. 34.

    Article  CAS  Google Scholar 

  48. Y. He, Q.L. Zhang, Q.S. Chen, J.W. Bian, C.C. Qi, Q. Kang, and Y. Feng, Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder, Constr. Build. Mater., 271(2021), art. No. 121567.

  49. Y.X. Yang, T.Q. Zhao, H.Z. Jiao, Y.F. Wang, and H.Y. Li, Potential effect of porosity evolution of cemented paste backfill on selective solidification of heavy metal ions, Int. J. Environ. Res. Public Health, 17(2020), No. 3, art. No. 814.

  50. E.H. Perkins, Y.K. Kharaka, W.D. Gunter, and J.D. DeBraal, Geochemical modeling of water-rock interactions using SOLMINEQ.88, [in] Chemical Modeling of Aqueous Systems II, American Chemical Society, Washington, p. 117.

  51. J.D. Allison, D.S. Brown, and K.J. Novo-Gradac, Minteqa2/Prodefa2, a Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual, Environmental Protection Agency, Athens [2019-10-01]. https://www.osti.gov/biblio/5673069

  52. A.C. Garrabrants, F. Sanchez, and D.S. Kosson, Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation, Waste Manage., 24(2004), No. 1, p. 19.

    Article  CAS  Google Scholar 

  53. E. Martens, D. Jacques, V.G. Tom, L. Wang, and D. Mallants, PHREEQC modelling of leaching of major elements and heavy metals from cementitious waste forms, MRS Online Proc. Lib., 1107(2008), art. No. 475.

  54. W.A. Sowa, Interpreting mean drop diameters using distribution moments, Atomization Sprays, 2(1992), No. 1, p. 1.

    Article  CAS  Google Scholar 

  55. S.F. Lütke, M.L.S. Oliveira, L.F.O. Silva, T.R.S. Cadaval, and G.L. Dotto, Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry, Chemosphere, 256(2020), art. No. 127138.

  56. C.Y. Jia, L.C. Wu, Q.S. Chen, P. Ke, J.J. De Yoreo, and B.H. Guan, Structural evolution of amorphous calcium sulfate nanoparticles into crystalline gypsum phase, CrystEngComm, 22(2020), No. 41, p. 6805.

    Article  Google Scholar 

  57. Y. Ennaciri, I. Zdah, H. El Alaoui-Belghiti, and M. Bettach, Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry, Chem. Eng. Commun., 207(2020), No. 3, p. 382.

    Article  CAS  Google Scholar 

  58. Y.B. Jiang, K.D. Kwon, S.F. Wang, C. Ren, and W. Li, Molecular speciation of phosphorus in phosphogypsum waste by solid-state nuclear magnetic resonance spectroscopy, Sci. Total Environ., 696(2019), art. No. 133958.

  59. B. L’ocsei, Mullite formation in the aluminium fluoride-silica system (AlF3-SiO2), Nature, 190(1961), No. 4779, p. 907.

    Article  Google Scholar 

  60. V.M. Norwood and J.J. Kohler, Characterization of fluorine-, aluminum-, silicon-, and phosphorus-containing complexes in wet-process phosphoric acid using nuclear magnetic resonance spectroscopy, Fertil. Res., 28(1991), No. 2, p. 221.

    Article  CAS  Google Scholar 

  61. T. Nishikawa, K. Suzuki, S. Ito, K. Sato, and T. Takebe, Decomposition of synthesized ettringite by carbonation, Cem. Concr. Res., 22(1992), No. 1, p. 6.

    Article  CAS  Google Scholar 

  62. T. Grounds, H.G. Midgley, and D.V. Novell, Carbonation of ettringite by atmospheric carbon dioxide, Thermochim. Acta, 135(1988), p. 347.

    Article  CAS  Google Scholar 

  63. J.Y. Jiang, Q. Zheng, D.S. Hou, Y.R. Yan, H. Chen, W. She, S.P. Wu, D. Guo, and W. Sun, Calcite crystallization in the cement system: Morphological diversity, growth mechanism and shape evolution, Phys. Chem. Chem. Phys., 20(2018), No. 20, p. 14174.

    Article  CAS  Google Scholar 

  64. B. Šavija and M. Luković, Carbonation of cement paste: Understanding, challenges, and opportunities, Constr. Build. Mater., 117(2016), p. 285.

    Article  CAS  Google Scholar 

  65. F.D.C. Holanda, H. Schmidt, and V.A. Quarcioni, Influence of phosphorus from phosphogypsum on the initial hydration of Portland cement in the presence of superplasticizers, Cem. Concr. Compos., 83(2017), p. 384.

    Article  CAS  Google Scholar 

  66. M. Bishop, S.G. Bott, and A.R. Barron, A new mechanism for cement hydration inhibition: Solid-state chemistry of calcium nitrilotris(methylene)triphosphonate, Chem. Mater., 15(2003), No. 16, p. 3074.

    Article  CAS  Google Scholar 

  67. J.Y. Park, H.J. Byun, W.H. Choi, and W.H. Kang, Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater, Chemosphere, 70(2008), No. 8, p. 1429.

    Article  CAS  Google Scholar 

  68. W. Guan and X. Zhao, Fluoride recovery using porous calcium silicate hydrates via spontaneous Ca2+ and OH release, Sep. Purif. Technol., 165(2016), p. 71.

    Article  CAS  Google Scholar 

  69. S.V. Tarali, N.P. Hoolikantimath, N. Kulkarni, and P.A. Ghorpade, A novel cement-based technology for the treatment of fluoride ions, SN Appl. Sci., 2(2020), No. 7, art. No. 1205.

  70. P.A. Ghorpade, M.G. Ha, and J.Y. Park, Effect of different types of calcium sulfate on the reactivity of cement/Fe(II) system in dechlorination of trichloroethylene, Desalin. Water Treat., 54(2015), No. 4–5, p. 1426.

    Article  CAS  Google Scholar 

  71. G. Diamantopoulos, M. Katsiotis, M. Fardis, I. Karatasios, S. Alhassan, M. Karagianni, G. Papavassiliou, and J. Hassan, The role of titanium dioxide on the hydration of Portland cement: A combined NMR and ultrasonic study, Molecules, 25(2020), No. 22, art. No. 5364.

  72. B. Lothenbach, L. Pelletier-Chaignat, and F. Winnefeld, Stability in the system CaO-Al2O3-H2O, Cem. Concr. Res., 42(2012), No. 12, p. 1621.

    Article  CAS  Google Scholar 

  73. J.D. Han, G.H. Pan, W. Sun, C.H. Wang, and D. Cui, Application of nanoindentation to investigate chemomechanical properties change of cement paste in the carbonation reaction, Sci. China Technol. Sci., 55(2012), No. 3, p. 616.

    Article  CAS  Google Scholar 

  74. M.A. Peter, A. Muntean, S.A. Meier, and M. Böhm, Competition of several carbonation reactions in concrete: A parametric study, Cem. Concr. Res., 38(2008), No. 12, p. 1385.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hunan Province, China (No. 2020JJ5718), a scholarship granted by the China Scholarship Council (No. CSC201906370062), and the National Natural Science Foundation of China (Nos. 52004330 and 52074351).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-kai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Qs., Sun, Sy., Liu, Yk. et al. Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill. Int J Miner Metall Mater 28, 1440–1452 (2021). https://doi.org/10.1007/s12613-021-2274-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2274-6

Keywords

Navigation