Log in

Softening, Hardening, and Precipitation Evolution of the AA6082-T651 Heat-Affected Zone Caused by Thermal Cycles During and After Welding

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, gas tungsten arc welding (GTAW) was used to weld AA6082-T651 plates using ER5335 and ER4340 filler metals. Significant softening of the heat-affected zone (HAZ) was observed in the as-welded condition. An attempt was made to recover the softening by applying an appropriate heat treatment after welding. The thermal process consisted of solution annealing and then aging at 160 °C for 18 h. The HAZ properties were characterized in the as-welded and post-weld heat-treated (PWHT) conditions using field emission scanning and high-resolution transmission electron microscopy, microhardness testing, thermal simulation, and differential scanning calorimetry techniques. The HAZ hardness profile revealed four distinct regions: partially melted zone (PMZ), partial solution, over-aged zone, and partial transformation. A PMZ with a hardness of about 90 Vickers was detected adjacent to the fusion line, which had been exposed to a sufficient temperature to dissolve the Mg2Si phases completely. Accordingly, natural aging increased the hardness of PMZ after welding. The minimum HAZ hardness was found at a distance of about 7–9 mm from the fusion line, where the temperature was in the range of β-Mg2Si formation and resulted in over-aging. In addition, dislocation density was reduced compared to the as-received base metal. The hardness after PWHT exhibited full recovery and improved to values higher than the as-received base metal. The hardness recovery was attributed to the uniformly distributed fine coherent needle-shaped βꞌꞌ-Mg2Si after PWHT. There were also coarse Al15(Fe,Mn)3Si2 intermetallic and submicron spherical Mn-rich dispersoids in all conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. George, D.S. Totten, Mackenzie, Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes (CRC Press, New York, 2003)

    Google Scholar 

  2. J.W. Bray, Aluminum mill and engineered wrought products, in  Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2 (ASM International, Materials Park, 1990). https://doi.org/10.31399/asm.hb.v02.9781627081627

    Google Scholar 

  3. J.R. Kissell, R.L. Ferry, Aluminum Structures: A Guide to Their Specifications and Design, 2nd edn. (John Wiley & Sons, Hoboken, 2002)

    Google Scholar 

  4. N.H. Alharthi, Evaluation and prediction of microstructure evolution in deformed aluminum alloys, M.S. Thesis, Lehigh University (2011)

    Google Scholar 

  5. L. Zhang, R. Lu, J. Tang, F. Jiang, D. Fu, H. Zhang, J. Teng, Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01353-y

    Article  Google Scholar 

  6. C. Vargel, Corrosion of Aluminium, 1st edn. (Elsevier, Amsterdam, 2004)

    Google Scholar 

  7. E.R. Imam Fauzi, M.S. Che Jamil, Z. Samad, P. Muangjunburee, J. Trans. Nonferrous Met. Soc. China. 27, 17 (2017). https://doi.org/10.1016/S1003-6326(17)60003-7

    Article  Google Scholar 

  8. A. Bandi, S.R. Bakshi, Met. Mater. Int. 28, 1678 (2022). https://doi.org/10.1007/s12540-021-01039-x

    Article  Google Scholar 

  9. S.R. Chikhale, K.P. Kolhe, A review on prediction of heat affected Zone of Al-6061 alloy. Int. J. Eng. Res. Special Issue, 54 (2015)

  10. W.A. Monteiro, Light Metal Alloys Applications, 1st edn. (IntechOpen, Rijeka, 2014)

    Google Scholar 

  11. M. Hakem, S. Lebaili, S. Mathieu, D. Miroud, A. Lebaili, B. Cheniti, Int. J. Adv. Manuf. Technol. 102, 2907 (2019). https://doi.org/10.1007/s00170-019-03401-1

    Article  Google Scholar 

  12. EN 1999, Eurocode 9: Design of aluminium structures, European Standard (2007)

  13. G. Mathers, The Welding of Aluminium and Its Alloys (Woodhead Publishing, Abington, 2002)

    Book  Google Scholar 

  14. T. Anderson, Welding Aluminum-Questions and Answers, 2nd edn. (American Welding Society, Miami, 2010)

    Google Scholar 

  15. W. Ma, B. Wang, J. Lin, X. Tang, Trans. Nonferrous Met. Soc. China. 27, 2454 (2017). https://doi.org/10.1016/S1003-6326(17)60272-3

    Article  Google Scholar 

  16. N.E. Nanninga, High Cycle Fatigue of AA6082 and AA6063 Aluminum Extrusions, Ph.D. Thesis, Michigan Technological University (2008)

  17. C.D. Marioara, S.J. Andersen, J. Jansen, H.W. Zandbergen, Acta Mater. 51, 789 (2003). https://doi.org/10.1016/S1359-6454(02)00470-6

    Article  Google Scholar 

  18. W. Chrominski, M. Lewandowska, Acta Mater. 103, 547 (2016). https://doi.org/10.1016/j.actamat.2015.10.030

    Article  Google Scholar 

  19. X. He, Q. Pan, H. Li, Z. Huang, S. Liu, K. Li, X. Li, Metals 9, 173 (2019). https://doi.org/10.3390/met9020173

    Article  Google Scholar 

  20. O.R. Myhr, Ã. Grong, H.G. Fjær, C.D. Marioara, Acta Mater. 52, 4997 (2004). https://doi.org/10.1016/j.actamat.2004.07.002

    Article  Google Scholar 

  21. S. Missori, A Sili, Mechanical behaviour of 6082-T6 aluminium alloy welds. Metall. Res. Technol. 18(1), 12 (2000)

    CAS  Google Scholar 

  22. S. Baskutis, J. Baskutiene, R. Bendikiene, A. Ciuplys, J. Mech. Sci. Technol. 33, 765 (2019). https://doi.org/10.1007/s12206-019-0131-6

    Article  Google Scholar 

  23. W. Zhang, H. He, C. Xu, W. Yu, L. Li, JOM 71, 2711 (2019). https://doi.org/10.1007/s11837-019-03375-1

    Article  Google Scholar 

  24. B. Wang, S. Xue, C. Ma, J. Wang, Z. Lin, Metals 7, 463 (2017). https://doi.org/10.3390/met7110463

    Article  Google Scholar 

  25. P. Wiechmann, H. Panwitt, H. Heyer, M. Reich, M. Sander, O. Kessler, Materials 11, 1396 (2018). https://doi.org/10.3390/ma11081396

    Article  Google Scholar 

  26. ASTM E384-99, Standard Test Methods for Microindentation Hardness of Materials (ASTM International, West Conshohocken, 2002)

    Google Scholar 

  27. B. Wang, J. Wang, X. Liu, Q. Li, X. Liu, Mater. Sci. Eng. A 858, 144090 (2022). https://doi.org/10.1016/j.msea.2022.144090

    Article  Google Scholar 

  28. M.V. Kral, P.N.H. Nakashima, D.R.G. Mitchell, Metall. Mater. Trans. A 37, 1987 (2006). https://doi.org/10.1007/s11661-006-0141-8

    Article  Google Scholar 

  29. S. Ferraro, A. Fabrizi, G. Timelli, Mater. Chem. Phys. 153, 168 (2015). https://doi.org/10.1016/j.matchemphys.2014.12.050

    Article  Google Scholar 

  30. X.D. Ren, L. Ruan, S.Q. Yuan, N.F. Ren, L.M. Zheng, Q.B. Zhan, J.Z. Zhou, H.M. Yang, Y. Wang, F.Z. Dai, Mater. Sci. Eng. A 578, 96 (2013). https://doi.org/10.1016/j.msea.2013.04.034

    Article  Google Scholar 

  31. W.S. Lee, Z.C. Tang, Mater. Des. 58, 116 (2014). https://doi.org/10.1016/j.matdes.2014.01.053

    Article  Google Scholar 

  32. S.W. Nam, D.H. Lee, Met. Mater. 6, 13 (2000). https://doi.org/10.1007/BF03026339

    Article  Google Scholar 

  33. A.F.M. Muggerud, E.A. Mørtsell, Y. Li, R. Holmestad, Mater. Sci. Eng. A 567, 21 (2013). https://doi.org/10.1016/j.msea.2013.01.004

    Article  Google Scholar 

  34. X. Qian, N. Parson, X.G. Chen, Mater. Sci. Eng. A 764, 138253 (2019). https://doi.org/10.1016/j.msea.2019.138253

    Article  Google Scholar 

  35. A.M.F. Muggerud, Transmission electron microscopy studies of dispersoids and constituent phases in al-mn-fe-si alloys, Ph.D. Thesis, Norwegian University of Science and Technology (2014)

  36. A.M.F. Muggerud, Y. Li, R. Holmestad, Acta Cryst. 70, 888 (2014). https://doi.org/10.1107/S2052520614017880

    Article  Google Scholar 

  37. Y.J. Li, A.M.F. Muggerud, A. Olsen, T. Furu, Acta Mater. 60, 1004 (2012). https://doi.org/10.1016/j.actamat.2011.11.003

    Article  Google Scholar 

  38. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, Acta Mater. 55, 3815 (2007). https://doi.org/10.1016/j.actamat.2007.02.032

    Article  CAS  Google Scholar 

  39. Z. Xu, H. Ma, N. Zhao, Z. Hu, Metals 10, 469 (2020). https://doi.org/10.3390/met10040469

    Article  Google Scholar 

  40. BS EN 485-2, Aluminum and Aluminum alloys - Sheet, Strip, and Plate. Part 2: Mechanical Properties, British Standard (2016)

    Google Scholar 

  41. J.M. Sánchez-Amaya, T. Delgado, L. González-Rovira, F.J. Botana, Appl. Surf. Sci. 255, 9512 (2009). https://doi.org/10.1016/j.apsusc.2009.07.081

    Article  Google Scholar 

  42. T.K. Chu, C.Y. Ho, in Thermal Conductivity 15, ed. by V.V. Mirkovich (Springer, Boston, 1978), p. 79

    Chapter  Google Scholar 

  43. E. Kaschnitz, L. Kaschnitz, S. Heugenhauser, Int. J. Thermophys. 40, 27 (2019). https://doi.org/10.1007/s10765-019-2490-8

    Article  Google Scholar 

  44. I. Dutta, S.M. Allen, J. Mater. Sci. Lett. 10, 323 (1991). https://doi.org/10.1007/BF00719697

    Article  Google Scholar 

  45. W.F. Miao, D.E. Laughlin, Scr. Mater. 40, 873 (1999). https://doi.org/10.1016/S1359-6462(99)00046-9

    Article  Google Scholar 

  46. J. Osten, B. Milkereit, C. Schick, O. Kessler, Materials 8, 2830 (2015). https://doi.org/10.3390/ma8052830

    Article  Google Scholar 

  47. Z. Chen, K. Liu, E. Elgallad, F. Breton, X.G. Chen, Metals 10, 763 (2020). https://doi.org/10.3390/met10060763

    Article  Google Scholar 

  48. G. Asghar, L. Peng, P. Fu, L. Yuan, Y. Liu, Mater. Des. 186, 108280 (2020). https://doi.org/10.1016/j.matdes.2019.108280

    Article  Google Scholar 

  49. J. Schällibaum, T. Burbach, C. Münch, W. Weiler, A. Wahlen, Mater. Sci. Eng. Technol. 46, 704 (2015). https://doi.org/10.1002/mawe.201500402

    Article  Google Scholar 

  50. P.V. Witzendorff, S. Kaierle, O. Suttmann, L. Overmeyer, J. Mater. Process. Technol. 225, 162 (2015). https://doi.org/10.1016/j.jmatprotec.2015.06.007

    Article  Google Scholar 

  51. K. Strobel, M.A. Easton, L. Sweet, M.J. Couper, J.F. Nie, Mater. Trans. 52, 914 (2011). https://doi.org/10.2320/matertrans.L-MZ201111

    Article  Google Scholar 

  52. S. Esmaeili, D.J. Lloyd, Mater. Sci. Forum 519-521, 169 (2006). https://doi.org/10.4028/www.scientific.net/MSF.519-521.169

    Article  Google Scholar 

  53. H.W. Zandbergen, S.J. Andersen, J. Jansen, Science 277, 1221 (1997). https://doi.org/10.1126/science.277.5330.1221

    Article  Google Scholar 

  54. S.J. Anderson, H.W. Zandbergen, J. Jansen, C. TrÆholt, U. Tundal, O. Reiso, Acta Mater. 46, 3283 (1998). https://doi.org/10.1016/S1359-6454(97)00493-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Dehmolaei.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jula, M., Dehmolaei, R. & Ranjbar, K. Softening, Hardening, and Precipitation Evolution of the AA6082-T651 Heat-Affected Zone Caused by Thermal Cycles During and After Welding. Met. Mater. Int. 29, 3664–3678 (2023). https://doi.org/10.1007/s12540-023-01470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01470-2

Keywords

Navigation